Выбрать главу

что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из вели­чины As или ее предела ds, мы можем определить параметр

Хорошим четырехмерным оператором будет и производ­ная по s, т. е. d/ds, так как она инвариантна относительно пре­образований Лоренца.

Для движущейся частицы ds легко связывается с dt. Для точечной частицы

(26.30)

а

Таким образом, оператор

есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости

Теперь мы видим, почему Ц(l-v2/c2) поправляет дело.

Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траекто­рии частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Dx=Dy=Dz=0, a Ds=Dt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.

Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:

(26.32)

где fm определяется формулой (26.28). Импульс же рm может быть записан в виде

(26.33)

где координаты xm=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:

(26.34)

напоминающей уравнения F=ma. Важно отметить, что урав­нения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую ме­ханику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в реляти­вистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.

Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть.

Три компоненты F, поделенные на Ц(1-v2/c2), составляют про­странственные компоненты fm , так что

Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/Ц(1-v2/c2), vy/Ц(1-v2/c2) и vz/Ц(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости um. Компоненты же Е и В входят в электромагнитный тензор вто­рого ранга Fmv. Отыскав в табл. 26.1 компоненты Fmv, соответ­ствующие Ех, Вг и Вv , получим