здесь уже начинает вырисовываться что-то интересное. В каждом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt, yy, zz — все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем
Этим мы ничего не изменили, так как благодаря антисимметрии Fmv слагаемое Fxx равно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):
(26.37)
Это по-прежнему уравнение (26.36), если предварительно мы примем соглашение: когда какой-то индекс встречается в произведении дважды (подобно v), нужно автоматически суммировать все слагаемые с одинаковыми значениями этого индекса точно так же, как и в скалярном произведении, т. е. пользуясь тем же самым правилом знаков.
Нетрудно поверить, что уравнение (26.37) так же хорошо работает и для m=y, и для m=z. Но как обстоит дело с m=t? Посмотрим для забавы, что дает формула
Теперь мы снова должны перейти к Е и В. После этого получается
или
Но в (26.28) ft бралось равным
А это одно и то же, что (26.38), ибо v·(vXB) равно нулю. Так что все идет как нельзя лучше.
В результате наше уравнение движения записывается в элегантном виде:
(26.39)
Как ни приятно видеть столь красиво записанное уравнение, форма эта не особенно полезна. При нахождении движения частицы обычно удобнее пользоваться первоначальным уравнением (26.24), что мы и будем делать в дальнейшем.
*Штрих используется здесь для обозначения запаздывающего положения и времени; не путайте его со штрихом в предыдущей главе, обозначавшим систему отсчета, подвергнутую преобразованиям Лоренца.
*В этом параграфе мы не будем принимать с за единицу.
Глава 27
ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС
§ 1. Локальные законы сохранения
§ 2. Сохранение энергии и электромагнитное поле
§ 3. Плотность энергии и поток энергии в электромагнитном поле
§ 4. Неопределенность энергии поля
§ 5. Примеры потоков энергии
§ 6. Импульс поля
§ 1. Локальные законы сохранения
То, что энергия вещества не всегда сохраняется, ясно как день. При излучении света объект теряет энергию. Однако потерянную энергию можно представить в какой-то другой форме, скажем, в форме энергии света. Поэтому закон сохранения энергии не полон, если не рассмотреть энергию, связанную со светом, в частности, и с электромагнитным полем вообще. Сейчас мы подправим его, а заодно и закон сохранения импульса с учетом электромагнитного поля. Мы, разумеется, не можем обсуждать их порознь, ибо, согласно теории относительности, это различные проявления одного и того же четырехвектора.
С сохранением энергии мы познакомились еще в начале нашего курса; тогда мы просто сказали, что полная энергия в мире остается постоянной. Теперь же мы хотим сделать очень важное обобщение идеи закона сохранения энергии, которое скажет нам нечто о деталях того, как это происходит. Новый закон будет говорить, что если энергия уходит из какой-то области, то это может происходить только за счет ее вытекания через границы рассматриваемой области. Это утверждение сильнее, чем просто сохранение энергии без подобных ограничений.
Чтобы легче понять смысл этого утверждения, посмотрим, как работает закон сохранения заряда. У нас есть плотность тока j и плотность заряда r, а сохранение заряда описывается тем, что если в каком-то месте заряд уменьшается, то оттуда должен происходить отток зарядов. Мы называем это сохранением заряда. Математически закон сохранения записывается в виде
(27.1)
Как следствие этого закона полный заряд всего мира остается постоянным. Заряды никогда не рождались и не уничтожались; в мире как целом нет никакой чистой прибыли зарядов, как нет и никаких потерь. Однако полный заряд мира можно сделать постоянным и другим способом. Пусть вблизи точки (1) находится заряд Q1 , а вблизи точки (2), расположенной от нее на некотором расстоянии, никакого заряда нет (фиг. 27.1). Предположим теперь, что с течением времени заряд Q1 постепенно исчезает, но что одновременно с уменьшением Q1 вблизи точки (2) появляется заряд Q2, причем так, что в любой момент сумма Qt и Q2 остается постоянной. Другими словами, в любой промежуточный момент количество заряда, теряемое Q1 , прибавляется к Q2. При этом в мире полное количество заряда сохраняется. Хотя это тоже «всемирное» сохранение заряда, мы не будем его называть «локальным» сохранением, ибо для того, чтобы заряд перебрался из точки (1) в точку (2), ему не обязательно появляться где-то в пространстве между этими точками. Локально заряд просто «теряется».