(27.19)
С изменением напряженности Е эта энергия тоже меняется. Когда конденсатор заряжается, внутренний объем приобретает энергию со скоростью
(27.20)
Так что должен существовать поток энергии, направленный откуда-то со стороны внутрь объема. Вы, конечно, думаете, что он идет от проводов, заряжающих конденсатор,— а вот и нет! Поток внутрь никоим образом не может идти с этой стороны, так как Е перпендикулярно к пластинам, а поэтому ЕXВ должно быть параллельно им.
Вы, вероятно, помните, что при зарядке конденсатора возникает магнитное поле, которое направлено по окружности вокруг оси. Об этом говорилось в гл. 23. Воспользовавшись последним уравнением Максвелла, мы там нашли, что магнитное поле на краю конденсатора определяется выражением
или
Направление его показано на фиг. 27.3. Таким образом, на краях конденсатора, как видно из рисунка, возникает поток энергии, пропорциональный ЕXВ. Так что энергия на самом деле втекает в конденсатор не со стороны проводов, а со стороны окружающего его пространства.
Фиг. 27.3. Вблизи заряженного конденсатора вектор Пойнтинга S направлен внутрь него
Фиг. 27.4. Поле вне конденсатора, заряженного двумя очень удаленными зарядами.
Давайте проверим, согласуется ли полный поток через всю поверхность между краями пластин со скоростью изменения внутренней энергии. Для этого лучше всего повторить весь путь, проделанный нами при выводе выражения (27.15). Посмотрим, к чему он приведет. Площадь поверхности равна 2pah, а абсолютная величина S=e0c2(EXB) равна
так что полный поток энергии будет
Это совпадает с уравнением (27.20). Удивительная вещь! Оказывается, при зарядке конденсатора энергия идет туда не через провода, а через зазор между краями пластин. Вот что говорит нам эта теория!
Как это может быть? Вопрос не из легких, но вот вам один из способов рассуждения. Предположим, у нас есть заряды, расположенные над и под конденсатором вдали от него. Когда такие заряды расположены вдалеке, то конденсатор окружает хотя и слабое, но необычайно протяженное поле (фиг. 27.4). Затем, когда заряды подходят все ближе и ближе, поле становится все сильнее и сильнее и все теснее «обнимает» конденсатор. Так что энергия поля, которая вначале была далеко, движется «по направлению» к конденсатору и в конце концов входит в пространство между пластинами.
В качестве следующего примера давайте посмотрим, что происходит с кусочком провода (с ненулевым сопротивлением), по которому течет ток. Поскольку провод обладает каким-то сопротивлением, то вдоль него действует электрическое поле, которое порождает ток, а в результате падения потенциала вдоль провода существует также параллельное его поверхности электрическое поле вне провода (фиг. 27.5). Кроме того, наличие тока порождает также магнитное поле, направленное по окружности вокруг провода.
Фиг. 27.5. Вектор Пойнтинга S вблизи провода с током.
Векторы Е и В направлены под прямым углом, а поэтому вектор Пойнтинга направлен радиально, как это показано на рисунке. Внутрь проводника со всех сторон втекает энергия. Она, разумеется, должна быть равна энергии, теряемой проводником в виде тепла.
Таким образом, наша «сумасшедшая» теория говорит, что электроны получают свою энергию, растрачиваемую ими на создание теплоты извне, от потока энергии внешнего поля внутрь провода. Интуиция нам подсказывает, что электрон пополняет свою энергию за счет «давления», которое толкает его вдоль провода, так что энергия как будто должна течь вниз (или вверх) по проводу. А вот теория утверждает, что на самом деле на электрон действует электрическое поле, создаваемое очень далекими зарядами, и электроны теряют свою энергию, расходуемую на тепло именно из этих полей. Энергия отдаленных зарядов каким-то образом растекается по большой области пространства и затем втекает внутрь провода.
Наконец, чтобы окончательно убедить вас в том, что это явно ненормальная теория, возьмем еще один пример, когда электрический заряд и магнит покоятся — сидят себе рядышком и не шевелятся. Представьте, что мы взяли точечный заряд, покоящийся вблизи центра магнитного бруска (фиг. 27.6). Все находится в покое, так что энергия тоже не изменяется со временем; Е и В постоянны. Но вектор Пойнтинга утверждает, что здесь есть поток энергии, так как ЕXВ не равно нулю. Если вы понаблюдаете за потоком энергии, то убедитесь, что он циркулирует вокруг этой системы. Но никакого изменения энергии не происходит; все, что втекает в любой объем, снова вытекает из него.