Выбрать главу

Фиг. 27.6. Заряд и магнит дают вектор Пойнтинга. циркулирую­щий по замкнутой петле.

Это напоминает круговой поток несжимаемой воды. Итак, в такой, казалось бы, статической ситуации есть поток энергии. Выглядит, прямо скажем, абсурдно!

А, может быть, это все-таки не так уж удивительно, если вспомнить, что так называемый «статический» магнит представ­ляет на самом деле непрерывно циркулирующий ток. Внутри постоянного магнита электроны все время крутятся. Так что, может быть, циркуляция энергии не так уж удивительна.

У вас, без сомнения, начинает создаваться впечатление, что теория Пойнтинга, по крайней мере частично, опровергает вашу интуицию относительно того, где находится энергия электро­магнитного поля. Вам может показаться, что необходимо за­няться «починкой» своей интуиции, отработкой ее на множестве примеров. Однако в этом, по-видимому, никакой необходимости нет. Не думаю, чтобы вы оказались в большом затруднении, забыв на время, что энергия втекает внутрь провода извне, а не течет вдоль него. Не так уж важно, используя идею сохра­нения энергии, указать во всех деталях, какой путь избирает энергия. Циркуляция энергии вокруг магнита и заряда в боль­шинстве случаев, по-видимому, совершенно несущественна. Хотя это и не так уж важно, однако ясно, что повседневная интуиция нас обманывает.

§ 6. Импульс поля

Теперь мне бы хотелось поговорить об импульсе поля. Поле обладает энергией; точно так же в единице объема оно обладает каким-то импульсом. Обозначим плотность импульса через g. Импульс, разумеется, может иметь различные направления, по­этому g должно быть вектором. Временно мы будем говорить об одной компоненте и для начала возьмем x-компоненту. По­скольку любая компонента импульса сохраняется, то мы можем сразу написать закон примерно такого вида:

Левая часть тривиальна. Скорость изменения импульса веще­ства равна просто действующей на него силе. Для частиц F=q(E+vXB), а для распределенных зарядов на единицу объема действует сила F=(rE+jXB). Однако слагаемое «поток импульса» несколько странно. Оно не может быть дивергенцией какого-то вектора, ибо это не скаляр, а скорее x-компонента некоторого вектора. Но как бы то ни было оно должно иметь вид

поскольку x-компонента импульса должна течь в каком-либо из трех направлений. Во всяком случае, каковы бы ни были а, b и с, такая комбинация предполагается равной потоку x-ком­поненты импульса.

Дальше по правилам той же самой игры напишем rЕ+jXB только через Е и В, исключив плотность заряда r и плотность тока j и затем жонглируя слагаемыми и произведя подстановку, получаем

Сопоставляя затем разные слагаемые, мы должны найти выра­жения для gx, a, b и с. В общем, здесь масса работы, но мы не собираемся заниматься ею. Вместо этого мы найдем только выражение для плотности импульса g и притом совсем другим способом.

В механике есть очень важная теорема, которая говорит: каков бы ни был поток энергии любого вида (энергия поля или какой-то другой сорт энергии), произведение ее количества, прошедшего через единицу площади в единицу времени, на 1/с2 равно импульсу в единице объема пространства. В случае электродинамики эта теорема говорит, что g равно вектору Пойнтинга, поделенному на с2:

(27.21)

Так что вектор Пойнтинга дает нам не только поток энергии, но после деления на с2 и плотность импульса. Этот же результат получился бы из анализа, который мы только что предполагали проделать, однако более заманчиво воспользоваться общей теоремой. Сейчас мы рассмотрим несколько интересных приме­ров и рассуждений, призванных убедить вас в справедливости этой общей теоремы.

Первый пример: возьмем множество заключенных в ящик частиц. Пусть, скажем, их будет N штук на кубический метр, и пусть они движутся вдоль ящика со скоростью v. Рассмотрим теперь воображаемую плоскость, перпендикулярную к v. Поток энергии через единицу площади этой плоскости в секунду равен Nv (т. е. числу частиц, пересекающих плоскость за се­кунду), умноженному на энергию каждой частицы. Энергия же каждой частицы будет m0c2/Ц(l-v2/c2). Так что поток энергии равен