В гл. 32 (вып. 3) мы обнаружили, что осциллирующий заряд излучает энергию со скоростью
(28.10)
Давайте посмотрим, какая мощность необходима для преодоления силы самодействия (28.9). Мощность, как известно, равна силе, умноженной на скорость, т. е. Fx:
(28.11)
Первый член пропорционален dx2/dt и поэтому соответствует скорости изменения кинетической энергии 1/2mv2, связанной с электромагнитной массой. А второй соответствует излучению мощности (28.10). Однако он отличается от (28.10). Разница состоит в том, что (28.11) справедливо в общем случае, тогда как (28.10) верно только для осциллирующего заряда. Мы можем доказать, что эти два выражения для периодического движения заряда эквивалентны. Перепишем для этого второй член выражения (28.11) в виде
что будет просто алгебраическим преобразованием. Если движение электрона периодическое, то величина хх периодически возвращается к одному и тому же значению. Так что если мы возьмем среднее значение ее производной по времени, то получим нуль. Однако второй член всегда положителен (как квадрат величины), так что его производная тоже положительна. Соответствующая ему мощность как раз равна выражению (28.10).
Итак, слагаемое с x"'; в выражении для силы самодействия необходимо для сохранения энергии излучающей системы и не может быть выброшено. Это было одним из триумфов теории Лоренца, доказавшего возникновение такого слагаемого в результате воздействия электрона самого на себя. Мы вынуждены поверить в идею самодействия и необходимость слагаемого с х"'. Проблема в том, как сохранить его, избавившись при этом от первого слагаемого в выражении (28.9), которое портит все дело. Этого мы не знаем. Как видите, классическая теория электрона сама себя завела в тупик.
Были предприняты и другие попытки выправить положение. Один путь был предложен Борном и Инфельдом. Состоит он в очень сложном изменении уравнений Максвелла, так что они перестают быть линейными. При этом можно сделать так, чтобы энергия и импульс оказались конечными. Но предложенные ими законы предсказывают явления, которые никогда не наблюдались. Их теория страдает еще и другим недостатком, к которому мы придем позднее и который присущ всем попыткам избежать описанную трудность.
Следующая интересная возможность была предложена Дираком. Он рассуждал так: давайте допустим, что действие электрона на себя описывается не первым слагаемым выражения (28.9), а вторым. И тогда ему пришла заманчивая идея избавиться ог первого слагаемого, сохранив при этом второе. Смотрите — сказал он,— когда мы брали только запаздывающие решения уравнений Максвелла, это условие выступало как дополнительное предположение; если бы вместо запаздывающих мы взяли опережающие волны, то ответ получился бы несколько другим. Выражение для силы самодействия приобрело бы вид
Это выражение в точности такое же, как и (28.9), за исключением знака перед вторым и некоторыми высшими членами ряда. [Замена запаздывающих волн опережающими означает просто смену знака запаздывания, что, как нетрудно видеть, эквивалентно изменению знака t. В выражении (28.9) это приводит только к изменению знака всех нечетных производных.] Итак, Дирак предложил: давайте примем новое правило, что электрон действует на себя полуразностью создаваемых им запаздывающих и опережающих полей. Полуразность выражений (28.9) и (28.12) дает