Выбрать главу

(22.15)

Сумма токов, входящих в узел, состоящий из четырех выводов е, f, g, h, тоже должна быть равна нулю:

(22.16)

Ясно, что это то же самое уравнение, что и (22.15). Оба эти уравнения не независимы. Общее правило гласит, что сумма то­ков, втекающих в любой узел, обязана быть равна нулю:

(22.17)

Наше прежнее заключение о том, что сумма падений напря­жений вдоль замкнутого контура равна нулю, должно выпол­няться для каждого контура сложной цепи. Точно так же наш результат, что сумма сил токов, втекающих в узел, равна нулю, тоже должен выполняться для любого узла. Эти два уравнения известны под названием пра­вил Кирхгофа.

Фиг, 22.10. Сумма токов, вхо­дящих в любой узел, равна нулю.

Фиг. 22.11. Анализ цепи с помощью правил Кирхгофа.

С их помощью можно найти силы токов и напряжения в какой угодно цепи.

Рассмотрим, например, цепь посложнее (фиг. 22.11). Как определить токи и напряжения в ней? Прямой путь решения таков. Рассмотрим каждый из четырех вспомогательных контуров цепи. (Скажем, один контур проходит через клеммы а, b, е, d и обратно к а.) Для каждого замкнутого контура напишем уравнение первого правила Кирхгофа — сумма падений напряжения вдоль вся­кого контура равна нулю. Нужно помнить, что падение напряжения считается положительным, если направление об­хода совпадает с направлением тока, и отрицательным, если на­правление обхода противоположно направлению тока; и надо еще помнить, что падение напряжения на генераторе равно от­рицательному значению э.д.с. в этом направлении. Так что для контура abeda получается

z1I1+ z3I3+z4I4-e1=0.

Прилагая те же правила к остальным контурам, получим еще три сходных уравнения.

После этого нужно написать уравнения для токов в каждом узле цепи. Например, складывая все токи в узле b, получаем

I1-I3-I2=0.

Аналогично, в узле е уравнение для токов принимает вид

I3-I4+I8-I5=0.

В изображенной схеме таких уравнений для токов пять. Ока­зывается, однако, что любое из этих уравнений можно вывести из остальных четырех, поэтому независимых уравнений только четыре. Итого в нашем распоряжении восемь независимых ли­нейных уравнений: четыре для напряжений, четыре для токов. Из них можно получить восемь независимых токов. А если станут известны токи, то определится и вся цепь. Падение напряжения на любом элементе дается током через этот элемент, умноженным на его импеданс (а для источников напряжения они вообще известны заранее).

Мы видели, что одно из уравнений для тока зависит от ос­тальных. Вообще-то уравнений для напряжения тоже можно написать больше, чем нужно. Хотя в схеме фиг. 22.11 и рас­сматривалась только четверка самых маленьких контуров, но ничего не стоило взять другие контуры и выписать для них уравнения для напряжений. Можно было взять, скажем, путь abcfeda. Или сделать обход по пути abcfehgda. Вы видите, что контуров — множество. И, анализируя сложные схемы, ничего не стоит получить слишком много уравнений. Но хоть есть пра­вила, которые подсказывают, как надо поступать, чтобы вышло наименьшее количество уравнений, обычно и так бывает сразу понятно, как выписать нужное число простейших уравнений. Кроме того, одно-два лишних уравнения вреда не приносят. К неверному ответу они не приведут, разве только немного запу­тают выкладки.

В гл. 25 (вып. 2) мы показали, что, если два импеданса z1 и z2 соединены последовательно, они эквивалентны одиночному импедансу zs, равному

zs = zl + z2. (22.18)

Кроме того, было показано, что, когда два импеданса соединены параллельно, они эквивалентны одиночному импедансу zp , равному

(22.19)

Если вы теперь оглянетесь назад, то увидите, что, выводя эти результаты, на самом деле вы пользовались правилами Кирх­гофа. Часто можно проанализировать сложную схему, повторно применяя формулы для последовательного и параллельного импедансов.

Фиг. 22.12, Цепь, которую мож­но проанализировать с помощью последовательных и параллель­ных комбинаций.