Глава 29
ДВИЖЕНИЕ ЗАРЯДОВ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ
§ 1. Движение в однородных электрическом я магнитном полях
§ 2. Анализатор импульсов
§ 3. Электростатическая линза
§ 4. Магнитная линза
§ 5. Электронный микроскоп
§ 6. Стабилизирующие поля ускорителей
§ 7. Фокусировка чередующимся градиентом
§ 8. Движение в скрещенных электрическом и магнитном полях
Повторить: гл. 30 (вып. 3) «Дифракция».
§ 1. Движение в однородных электрическом и магнитном полях
Мы теперь перейдем к описанию в общих чертах движения зарядов в различных условиях. Наиболее интересные явления возникают тогда, когда зарядов движется много и все они взаимодействуют друг с другом. Так обстоит дело, когда электромагнитные волны проходят через кусок вещества или плазму; тогда легионы зарядов взаимодействуют друг с другом. Но это очень сложная картина. Позднее мы поговорим и о таких проблемах; пока же мы обсудим несравненно более простую задачу о движении отдельного заряда в заданном поле. При этом можно пренебречь всеми другими зарядами, за исключением, разумеется, тех зарядов и токов, которые создают предполагаемое нами поле.
Начать, по-видимому, нужно с движения частицы в однородном электрическом поле. Движение при небольших скоростях не представляет особенного интереса — это просто равномерно ускоренное движение в направлении поля. А вот когда частица, набрав достаточно энергии, превращается в релятивистскую, движение ее становится более сложным. Решение для этого случая я оставляю вам — потрудитесь и отыщите его сами.
Мы же рассмотрим движение в однородном магнитном поле, когда электрического поля нет. Эту задачу мы уже решали. Одним из решений было движение частиц по окружности. Магнитная сила
qv X В всегда действует под прямым углом к направлению движения, так что производная dp/dt перпендикулярна р и равна по величине vp/R, где R — радиус окружности, т. е.
Фиг. 29.1. Движение частицы в однородном магнитном поле.
Таким образом, радиус круговой орбиты равен
(29.1)
Это одно из возможных движений. Если движущаяся частица имеет только одну составляющую в направлении поля, то она не изменяется, ибо у магнитной силы отсутствует компонента в направлении поля. Общее же движение частицы в однородном магнитном поле — это движение с постоянной скоростью в направлении В и круговое движение под прямым углом к В, т. е. движение по цилиндрической спирали (фиг. 29.1). Радиус спирали определяется равенством (29.1) с заменой р на р┴ — компоненту импульса, перпендикулярную к направлению поля.
§ 2. Анализатор импульсов
Однородное магнитное поле часто применяется в «анализаторе», или «спектрометре импульсов» высокоэнергетических частиц. Предположим, что в точке А (фиг. 29.2, а) в однородное магнитное поле влетают заряженные частицы, причем магнитное поле перпендикулярно плоскости рисунка. При этом каждая частица будет лететь по круговой орбите, радиус которой пропорционален ее импульсу. Если все частицы влетают в поле перпендикулярно его краю, то они покидают его на расстоянии х от точки А, пропорциональном их импульсу р. Помещенный в некоторой точке С счетчик будет регистрировать только такие частицы, импульс которых находится где-то в интервале Dр величин p=qBx/2.
Фиг. 29.2. 180-градусный спектрометр импульсов с однородным магнитным полем.
а — траектории частиц с разными импульсами; 6 — траектории частиц, влетающих под равными углами. Магнитное поле направлено перпендикулярно плоскости рисунка.
Нет необходимости, разумеется, чтобы перед регистрацией частица поворачивалась на 180°, но такой «180-градусный спектрометр» обладает особым свойством: для него совсем необязательно, чтобы частицы входили под прямым углом к краю поля. На фиг. 29.2, б показаны траектории трех частиц с одинаковым импульсом, но входящих в поле под различными углами. Вы видите, что траектории у них разные, но все они покидают поле очень близко к точке С. В подобных случаях мы говорим о «фокусировке». Преимущество такого способа фокусировки в том, что она позволяет допускать в точку А частицы, летящие под большими углами, хотя обычно, как видно из рисунка, углы эти в какой-то степени ограничены. Большое угловое разрешение обычно означает регистрацию за данный промежуток времени большего числа частиц и сокращения, следовательно, времени измерения.