Фиг. 29.9. Сферическая аберрация линзы.
по порядку величины меньше
где l — длина волны света. Для лучших оптических микроскопов угол 6 приближается к теоретическому пределу 90°, так что б приблизительно равно l, или около 5000 Е.
Тe же самые ограничения применимы и к электронному микроскопу, но только длина волн в нем, т, е. длина волны электронов с энергией 50 кв, составляет 0,05 Е. Если бы можно было использовать объектив с отверстием около 30°, то мы способны были бы различить объекты величиной в 1/5 А. Атомы в молекулах обычно расположены на расстоянии 1—2 Е, следовательно, тогда вполне можно было бы получать фотографии молекул. Биология стала бы куда проще; мы бы могли сфотографировать структуру ДНК. Как это было бы замечательно! Ведь все сегодняшние исследования в молекулярной биологии — это попытки определить структуру сложных органических молекул. Если бы мы были способны их видеть!
Но к несчастью, самая лучшая разрешающая способность электронных микроскопов приближается только к 20 Е. А все потому, что до сих пор никому не удалось построить линзу с большой светосилой. Все линзы страдают «сферической аберрацией». Это означает вот что: лучи, идущие под большим углом к оси, и лучи, идущие близко к ней, фокусируются в разных точках (фиг. 29.9). С помощью специальной технологии изготовляются линзы для оптических микроскопов с пренебрежимо малой сферической аберрацией, но никому до сих пор не удалось получить электронную линзу, лишенную сферической аберрации. Можно показать, что для любой электростатической или магнитной линзы описанных нами типов сферическая аберрация неизбежна. Наряду с дифракцией аберрация ограничивает разрешающую способность электронных микроскопов ее современным значением.
Ограничения, о которых мы упоминали, не относятся к электрическим и магнитным полям, не имеющим осевой симметрии или не постоянным во времени. Вполне возможно, что в
один прекрасный день кто-нибудь придумает новый тип электронных линз, свободных от аберрации, присущей простым электронным линзам. Тогда можно будет непосредственно фотографировать атомы. Возможно, что когда-нибудь химические соединения будут анализироваться просто визуальным наблюдением за расположением атомов, а не по цвету какого-то осадка!
§ 6. Стабилизирующие поля ускорителей
Магнитные поля используются в высокоэнергетических ускорителях еще для того, чтобы заставить частицу двигаться по нужной траектории. Такие устройства, как циклотрон и синхротрон, ускоряют частицу до высоких энергий, заставляя ее многократно проходить через сильное электрическое поле. А на своей орбите частицу удерживает магнитное поле.
Мы видели, что путь частицы в однородном магнитном поле проходит по круговой орбите. Но это справедливо только для идеального магнитного поля. А представьте себе, что поле В в большой области только приблизительно однородно: в одной части оно немного сильнее, чем в другой. Если в такое поле мы запустим частицу с импульсом р, то она полетит по примерно круговой орбите с радиусом R=p/qB. Однако в области более сильного поля радиус кривизны будет несколько меньше. При этом орбита уже не будет замкнутой окружностью, а возникнет «дрейф», подобный изображенному на фиг. 29.10. Если угодно, можно считать, что небольшая «ошибка» в поле приводит к толчку, который сдвигает частицу на новую траекторию. В ускорителе же частица делает миллионы оборотов, поэтому необходима своего рода «радиальная фокусировка», которая удерживала бы траектории частиц на близкой к желаемой орбите.
Другая трудность, связанная с однородным полем, состоит в том, что частицы не остаются в одной плоскости. Если они начинают движение под небольшим углом или небольшой угол создается неточностью поля, то частицы идут по спиральному пути, который в конце концов приведет их либо на полюс магнита, либо на потолок или пол вакуумной камеры.
Фиг. 29.10. Движение частицы в слабо неоднородном поле.
Фиг. 29.11. Радиальное движение частицы в магнитном поле.
а — с большим положительным «наклоном»; б — с малым отрицательным «наклоном»; в — с большим отрицательным «наклоном».