Выбрать главу

Фиг. 29.9. Сферическая аберрация линзы.

по порядку величины меньше

где lдлина волны света. Для лучших оптических микроско­пов угол 6 приближается к тео­ретическому пределу 90°, так что б приблизительно равно l, или около 5000 Е.

Тe же самые ограничения применимы и к электронному ми­кроскопу, но только длина волн в нем, т, е. длина волны электро­нов с энергией 50 кв, составляет 0,05 Е. Если бы можно было использовать объектив с отверстием около 30°, то мы способны были бы различить объекты величиной в 1/5 А. Атомы в молекулах обычно расположены на расстоянии 1—2 Е, следователь­но, тогда вполне можно было бы получать фотографии молекул. Биология стала бы куда проще; мы бы могли сфотографировать структуру ДНК. Как это было бы замечательно! Ведь все сегод­няшние исследования в молекулярной биологии — это попытки определить структуру сложных органических молекул. Если бы мы были способны их видеть!

Но к несчастью, самая лучшая разрешающая способность электронных микроскопов приближается только к 20 Е. А все потому, что до сих пор никому не удалось построить линзу с большой светосилой. Все линзы страдают «сферической абер­рацией». Это означает вот что: лучи, идущие под большим углом к оси, и лучи, идущие близко к ней, фокусируются в раз­ных точках (фиг. 29.9). С помощью специальной технологии из­готовляются линзы для оптических микроскопов с пренебрежимо малой сферической аберрацией, но никому до сих пор не уда­лось получить электронную линзу, лишенную сферической абер­рации. Можно показать, что для любой электростатической или магнитной линзы описанных нами типов сферическая аберра­ция неизбежна. Наряду с дифракцией аберрация ограничивает разрешающую способность электронных микроскопов ее со­временным значением.

Ограничения, о которых мы упоминали, не относятся к электрическим и магнитным полям, не имеющим осевой симмет­рии или не постоянным во времени. Вполне возможно, что в

один прекрасный день кто-нибудь придумает новый тип электрон­ных линз, свободных от аберрации, присущей простым электрон­ным линзам. Тогда можно будет непосредственно фотографиро­вать атомы. Возможно, что когда-нибудь химические соедине­ния будут анализироваться просто визуальным наблюдением за расположением атомов, а не по цвету какого-то осадка!

§ 6. Стабилизирующие поля ускорителей

Магнитные поля используются в высокоэнергетических уско­рителях еще для того, чтобы заставить частицу двигаться по нужной траектории. Такие устройства, как циклотрон и синхро­трон, ускоряют частицу до высоких энергий, заставляя ее много­кратно проходить через сильное электрическое поле. А на своей орбите частицу удерживает магнитное поле.

Мы видели, что путь частицы в однородном магнитном поле проходит по круговой орбите. Но это справедливо только для идеального магнитного поля. А представьте себе, что поле В в большой области только приблизительно однородно: в одной части оно немного сильнее, чем в другой. Если в такое поле мы запустим частицу с импульсом р, то она полетит по примерно круговой орбите с радиусом R=p/qB. Однако в области более сильного поля радиус кривизны будет несколько меньше. При этом орбита уже не будет замкнутой окружностью, а возникнет «дрейф», подобный изображенному на фиг. 29.10. Если угодно, можно считать, что небольшая «ошибка» в поле приводит к толчку, который сдвигает частицу на новую траекторию. В ускорителе же частица делает миллионы оборотов, поэто­му необходима своего рода «радиальная фокусировка», кото­рая удерживала бы траектории частиц на близкой к желаемой орбите.

Другая трудность, связанная с однородным полем, состоит в том, что частицы не остаются в одной плоскости. Если они начинают движение под небольшим углом или небольшой угол создается неточностью поля, то частицы идут по спираль­ному пути, который в конце концов приведет их либо на полюс магнита, либо на по­толок или пол вакуумной камеры.

Фиг. 29.10. Движение частицы в слабо неоднородном поле.

Фиг. 29.11. Радиальное движение частицы в магнитном поле.

а — с большим положительным «наклоном»; б — с малым отрицательным «наклоном»; в — с большим отрицательным «наклоном».