Выбрать главу

* Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p 0 *Е постоянного дипольного момента p 0 в поле Е.

* Обычно для коэффициентов пропорциональности между Р и Е пользуются термином тензор восприимчивости, оставляя термин поля­ризуемость для величин, относящихся к одной частице. Прим. ред.

* В гл. 10, следуя общепринятому соглашению, мы писали Р=e 0 cЕ и величину c (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо e 0 c мы будем писать a. Для изо­тропного диэлектрика a=(c-1)e 0 , где c — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)

Глава 32

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА

§ 1. Поляризация вещества

§ 2. Уравнения Максвелла в диэлектрике

§ 3. Волны в диэлектрике

§ 4. Комплексный показатель преломления

§ 5. Показатель преломления смеси

§ 6. Волны в металлах

§ 7.Низкочастотное и высокочастотное приближение глубина скин-слоя и плазменная частота

Повторить: всё что в табл. 32.

§ 1. Поляризация вещества

Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плот­ным веществом. Теорию показателя преломле­ния мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на по­казателе преломления веществ с малой плотно­стью наподобие газов. Но физические принципы, приводящие к возникновению показателя пре­ломления, мы там все же выяснили. Электри­ческое поле световой волны поляризует мо­лекулы газа, создавая тем самым осцилли­рующие дипольные моменты, а ускорение ос­циллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерфери­руя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эф­фект в целом оказывается эквивалентным из­менению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникаю­щими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действую­щие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эф­фект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.

Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломле­ния (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я соби­раюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах, а сразу же буду браться за уравнения.

Таблица 32.1 · ЧТО БУДЕТ ИСПОЛЬЗОВАНО В ЭТОЙ ГЛАВЕ

Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится N ча­стиц и каждая из них ведет себя как гармонический осциллятор. Мы пользуемся моделью атома или молекулы, к которой элект­рон привязан силой, пропорциональной его перемещению (как будто он удерживается пружинкой). Отметим, что такая модель атома с классической точки зрения незаконна, однако позднее будет показано, что правильная квантовомеханическая теория дает (в простейших случаях) эквивалентный результат. В наших прежних рассмотрениях мы не учитывали «тормозящей» силы в атомном осцилляторе, а сейчас это будет сделано. Такая сила соответствует сопротивлению при движении, т. е. она пропор­циональна скорости электрона. Уравнением движения при этом будет

F=qeE =m(x+gx+w20x), (32.1)

где х — перемещение, параллельное направлению поля Е. (Осциллятор предполагается изотропным, т. е. восстанавли­вающая сила одинакова во всех направлениях. Кроме того, на время мы ограничимся линейно поляризованной волной, так что поле Е не меняет своего направления.) Если действую­щее на атом электрическое поле изменяется со временем сину­соидально, то мы пишем.

E=E0eiwt. (32.2)

С той же самой частотой будет осциллировать и перемещение, поэтому можно считать

х=х 0 е i w t .

Подставляя х=iwх и х=-w2х, можно выразить х через Е:

А зная перемещение, можно вычислить ускорение х и найти от­ветственную за преломление излученную волну. Именно таким способом в гл. 31 (вып. 3) мы подсчитывали показатель пре­ломления.

Теперь же мы пойдем другим путем. Индуцированный дипольный момент атома р равен qex, или в силу уравнения (32.3)

Так как р пропорционально Е, то мы пишем

р=e0a(w)Е, (32,5) где a — атомная поляризуемость:

Подобный же ответ для движения электронов в атоме дает и квантовая механика, но с учетом следующих особен­ностей. У атомов есть несколько собственных частот, каждая из которых имеет свою диссипативную постоянную g. Кроме того, каждая гармоника имеет еще свою эффективную «силу», выражаемую в виде произведения поляризуемости при дан­ной частоте на постоянную связи f, которая, как ожидается, по порядку величины равна единице. Обозначая каждый из трех параметров w0, g и f для каждой из гармоник через wok, gk и fk и суммируя по всем гармоникам, мы вместо (32.6) получаем