Выбрать главу

Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как еi(wt-kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следую­щим образом:

Ex=E0ei(wt-kz). (32.21)

Вы знаете, что любая функция от (z-vt) представляет вол­ну, бегущую со скоростью v. Показатель экспоненты в выраже­нии (32.21) можно переписать в виде

-ik[z-(w/k)t],

так что выражение (32.21) представляет волну, фазовая ско­рость которой равна

vфаз=w/k.

В гл. 31 (вып. 3) показатель преломления nопределялся нами из формулы

vфаз=c/n.

С учетом этой формулы (32.21) приобретает вид

Ex=E 0 e i w ( t - nz / c ) .

Таким образом, показатель nможно определить, если мы най­дем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением

n=kc/w. (32.22)

В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением коор­динаты х, поэтому С·P=0 и мы сразу же избавляемся от пер­вого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рхбудет изме­няться как еiwtи d2Px/dt2= -w2Px. Лапласиан же в уравне­нии (32.20) превращается просто в д2Ex/dz2=-k2Еx, так что в результате получаем

Теперь на минуту предположим, что раз Е изменяется си­нусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположе­нию и обсудим его.) Таким образом, пишем

P x =e 0 NaE x .

При этом Ехвыпадает из уравнения (32.23), и мы находим

k2=w2/c2(1+Na). (32.24)

Мы получили, что волна вида (32.21) с волновым числом k, задаваемым уравнением (32.24), будет удовлетворять уравне­ниям поля. Использование же выражения (32.22) для показате­ля nдает

n2 = l+Na. (32.25)

Сравним эту формулу с тем, что получилось у нас для пока­зателя преломления газа (гл. 31, вып. 3). Там мы нашли урав­нение (31.19), которое тогда имело вид

Формула (32.25) после подстановки w из (32.6) дает

Что здесь нового? Во-первых, появился новый член igw, возникший в результате учета поглощения энергии в осцилля­торах. Во-вторых, слева вместо n теперь стоит n2и, кроме того, отсутствует дополнительный множитель 1/2. Но заметьте, что если значение N достаточно мало, так что n близок к единице (как это имеет место в газе), то выражение (32.27) говорит, что n2 равен единице плюс некое малое число, т. е. n2=1+e. При этом условии мы можем написать, что n=Ц(1+e)»l+e/2, и оба выра­жения оказываются эквивалентными. Таким образом, наш но­вый метод дает для газа тот же самый, найденный нами ранее результат.

Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поля­ризованное поле, действующее на каждый из атомов,— это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Анало­гичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом, представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/3e0. (Не за­будьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае куби­ческого кристалла.)

Те же рассуждения верны и для электрического поля в вол­не, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении

Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следую­щим образом:

Р =e0NaЕлок. (32.29)

Подставляя теперь Елок из формулы (32.28), находим

или

Иными словами, Р для плотного материала все еще пропорцио­нальна Е (для синусоидального поля). Однако константа про­порциональности будет уже e0/Na/[1-(Na/3)], а не e0Nallfa, как раньше. Таким образом, нам нужно поправить формулу (32.25):

Более удобно переписать это в виде

который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.

В плотном материале возникает и другое усложнение. По­скольку атомы расположены слишком тесно, они сильно взаимо­действуют друг с другом. Поэтому внутренние гармоники осцил­ляции изменяются. Собственные частоты атомных осцилляций размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень боль­шим. Таким образом, все w0 и g твердого вещества будут дру­гими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять а, по крайней мере приближенно, уравнением (32.7), так что

Наконец, последнее усложнение. Если плотный материал представляет собой смесь нескольких компонент, то каждая из них дает свой вклад в поляризацию. Полная a будет суммой вкладов различных компонент смеси [за исключением неточ­ности приближения локального поля в упорядоченных кри­сталлах, т. е. выражения (32.28) — эффекты, которые мы обсуж­дали при разборе сегнетоэлектриков]. Обозначая через njчисло атомов каждой компоненты в единице объема, мы должны заменить формулу (32.32) следующей:

где каждая aj будет определяться выражением типа (32.7). Выражение (32.34) завершает нашу теорию показателя прелом­ления. Величина 3(n2-1)/(n2+2) задается комплексной функ­цией частоты, каковой является средняя атомная поляризуе­мость a(w). Точное вычисление a(w) (т. е. нахождение fk, gkи w0k) для плотного вещества — одна из труднейших задач квантовой механики. Это было сделано только для нескольких особенно простых веществ.

полную версию книги