Выбрать главу

Электрический вектор в падающей волне может быть записан в виде

Поскольку вектор k перпендикулярен оси z, то

k·r=kxx+kyy. (33.12) Отраженную волну мы запишем как

так что ее частота равна w', волновое число k', а амплитуда Е'0. (Мы, конечно, знаем, что частота и величина вектора k в отра­женной волне те же, что и в падающей волне, но не хотим пред­полагать даже это. Пусть это все получится само собой из мате­матического аппарата.) Наконец, запишем преломленную волну:

Вы знаете, что одно из уравнений Максвелла дает соотноше­ние (33.9), так что для каждой из волн

Кроме того, если показатели преломления двух сред мы обозна­чим через n1и n2, то из уравнения (33.10) получится

Поскольку отраженная волна находится в том же ма­териале, то

в то время как для преломленной волны

§ 3. Граничные условия

Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и пре­ломленной волн через параметры падающей. Как это сделать?

Три описанные нами волны удов­летворяют уравнениям Максвелла в однородном материале, но, кро­ме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит на самой границе. Мы най­дем, что уравнения Максвелла требуют, чтобы три волны опре­деленным образом согласовывались друг с другом.

Вот один из примеров того, что мы имеем в виду. Составляю­щая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:

СXE=дB/дt, (33.19)

в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).

Фиг. 33.4. Граничное условие E y 2 =E y 1 , полученное из равенства

Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:

Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Еy1и Еy2, а длина прямоугольника равна l, то мы получаем

E y 1 l-E y 2 l=0

или

Еу1у2, (33.20)

как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.

Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрении маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватываю­щих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.

Как, например, в задаче о тепловом потоке через поверх­ность определить температуру на обеих прилежащих к ней сторонах? Конечно, вы вправе утверждать, что тепло, прите­кающее к границе с одной стороны, должно быть равно теплу, утекающему от нее с другой. Обычно это возможно и, вообще говоря, очень полезно находить граничные условия из такого рода физических рассуждений. Однако могут встретиться случаи, когда при работе над какой-то проблемой вам известны лишь уравнения и вы не можете непосредственно увидеть, какие же физические аргументы можно использовать. Так что, хотя в данный момент мы заинтересованы только в электромаг­нитных явлениях, где можно привести физические аргументы, я хочу научить вас методу, который можно применить в любой задаче: общему методу нахождения непосредственно из диффе­ренциальных уравнений того, что происходит на границе.

Начнем с выписывания всех уравнений Максвелла для ди­электрика, но на этот раз скрупулезно выписывая все компо­ненты:

Эти уравнения должны быть справедливы как в области 1 (слева от границы), так и в области 2 (справа от нее). Мы уже выписывали решения в областях 1 и 2. Они должны удовлет­воряться и на самой границе, которую мы можем назвать об­ластью 3. Хотя обычно мы считаем границу чем-то абсолютно резким, на самом деле таких границ не бывает. Физические свойства, правда, изменяются очень быстро, но все же не беско­нечно быстро. Во всяком случае, мы можем считать, что между областями 1 и 2 изменение показателя преломления хотя и очень быстрое, но непрерывное. Это небольшое расстояние, на котором оно происходит, мы можем назвать областью 3. Подобный же переход в области 3 будут претерпевать и другие характери­стики поля, такие, как Рхили Еyи т. п. Однако дифферен­циальные уравнения должны удовлетворяться; именно следуя за дифференциальными уравнениями в этой области, мы придем к необходимым «граничным условиям».

Предположим, например, что у нас есть граница между вакуумом (область 1) и стеклом (область 2). В вакууме нечему поляризоваться, так что P1=0. А поляризация в стекле пусть равна Р2. Между вакуумом и стеклом существует гладкий, но быстрый переход. Если мы проследим за какой-то компонентой Р, скажем Рх, то она может изменяться так, как это показано на фиг. 33.5, а.

Фиг. 33.5. Поля в переходной об­ласти 3 между двумя различными материалами в областях 1 и 2.

Предположим теперь, что мы взяли первое из наших уравнений — уравнение (33.21). В него входит производ­ная от компонент Р по переменным х, у и z. Производные по у и r не очень интересны — в этих направлениях не происходит ничего замечательного. Но производная от Рхпо х в области 3 из-за быстрого изменения Рхбудет громадна. Производная дРх/дх, как показано на фиг. 33.5,б, имеет на границе очень резкий пик. Если вы представите, что граница сжимается до еще более тонкой области, пик вырастет еще больше. Если для интересующих нас волн граница действительно резкая, то ве­личина дP/дx в области 3 будет больше, много больше любого вклада, который может получиться из-за изменения Рв сто­роне от границы, так что мы пренебрегаем любыми другими изменениями, за исключением происходящих на границе.

Но как теперь можно удов­летворить уравнению (33.21), если с правой стороны у нас возвышается огромный пик? Только если существует рав­ный ему громадный пик с другой стороны. Что-то и с левой стороны должно быть большим. Единственная воз­можность — это дЕх/дх, пос­кольку изменения в направ­лениях у и z в тех волнах, о которых мы только что упо­мянули, дают лишь малый эффект. Таким образом, -e0(дЕх/дх) должно быть, как это показано на фиг. 33.5,в, точной копией дP/дx. Получается