Из того, что у нас было до сих пор, можно получить другое интересное и в каком-то смысле удивительное заключение. В некоторых классических расчетах в окончательном результате появлялась величина, равная квадрату момента количества движения J, другими словами, J·J. И вот оказывается, что правильную квантовомеханическую формулу можно угадать с помощью классических вычислений и следующего простого правила: замените J2 = J·J на j(j+1)h2. Этим правилом часто пользуются, и обычно оно дает верный результат, однако не всегда. Чтобы показать вам, почему это правило может хорошо работать, я приведу следующее рассуждение.
Скалярное произведение J·J можно записать как
J·J=J2x+J2y+J2z
Поскольку это скаляр, то он должен оставаться одним и тем же для любой ориентации спина. Предположим, что мы случайно выбрали образец какой-либо атомной системы и произвели измерения либо величины J2x, либо J2y, либо J2z — среднее
значение любой из них должно быть тем же самым. (Ни одно из направлений не имеет особого преимущества перед любым другим.) Следовательно, среднее значение J·J равно просто утроенной средней величине любой компоненты, скажем J2z :
<J·J>cp=3<J2z>.
Но поскольку J·J при любой ориентации одно и то же, его среднее, разумеется, будет постоянной величиной
J·J = 3<J2z>cp. (34.24)
Если же мы теперь скажем, что то же самое уравнение будет использоваться и в квантовой механике, то можем легко найти <J2z>ср. Нам просто нужно взять сумму (2j+1) возможных значений J2zи поделить ее на число всех значений:
Вот что получается для системы со спином 3/2:
Отсюда мы заключаем, что
На вашу долю остается доказать, что соотношение (34.25) вместе с (34.24) дает в результате
Хотя в рамках классической физики мы бы думали, что наибольшее возможное значение z-компоненты J равно просто абсолютной величине J, именно Ц(J·J), в квантовой механике максимальное значение Jzвсегда немного меньше его, ибо jh всегда меньше Ц[j(j+1)]h. Момент количества движения никогда не направлен «полностью вдоль оси z».
§ 8. Магнитная энергия атомов
Теперь я снова хочу поговорить о магнитном моменте. Я уже говорил, что в квантовой механике магнитный момент атомной системы может быть связан с моментом количества движения соотношением (34.6):
где -qe—заряд, а m — масса электрона.
Атомные магнитики, будучи помещены во внешнее магнитное поле, приобретут дополнительную магнитную энергию, которая зависит от компоненты их магнитного момента в направлении поля. Мы знаем, что
Uмаг=-m·В. (34.28) Выбирая ось z вдоль направления поля В, получаем
Uмаг=mzВ. (34.29) А используя уравнение (34.27), находим
Согласно квантовой механике, величина Jzможет принимать только такие значения: jh, (j-1)h,...,- jh. Поэтому магнитная энергия атомной системы не произвольна, допустимы только некоторые ее значения. Например, максимальная величина энергии равна
Величину qeh/2m обычно называют «магнетоном Бора» и обозначают через mB:
Возможные значения магнитной энергии будут следующими:
где Jz/h принимает одно из следующих значений: j, (j-1), (j-2), ..., (-j+1), -j.
Другими словами, энергия атомной системы, помещенной в магнитное поле, изменяется на величину, пропорциональную полю и компоненте Jг. Мы говорим, что энергия атомной магнитной системы «расщепляется магнитным полем на 2j+1 уровня». Например, атомы со спином j=3/2, энергия которых вне магнитного поля равна U0, в магнитном поле будут иметь четыре возможных значения энергии. Эти энергии можно изобразить на диаграмме энергетических уровней наподобие фиг. 34.5.
Фиг. 34.5. Возможные магнитные энергии атомной системы со спином 3/2в магнитном поле В.
Однако энергия каждого атома в данном поле В принимает только одно из четырех возможных значений. Именно это говорит квантовая механика о поведении атомной системы в магнитном поле.
Простейшая «атомная» система — отдельный электрон. Спин электрона равен J/2, поэтому у него возможны два состояния: Jz=h/2 и Jz=-h/2. Для спинового магнитного момента отдельного покоящегося электрона (у которого отсутствует орбитальное движение) g=2, так что магнитная энергия будет ±mBB. На фиг. 34.6 показаны возможные энергии электрона в магнитном поле.
Фиг. 34.6. Два возможных энергетических состояния электрона в магнитном поле В.
Грубо говоря, спин электрона направлен либо «вверх» (по магнитному полю), либо «вниз» (против поля).
У системы с более высоким спином число состояний тоже больше. Поэтому мы можем в зависимости от величины Jzговорить о спине, направленном «вверх» или «вниз» или под некоторым «углом».
Эти результаты квантовой механики мы будем использовать при обсуждении магнитных свойств материалов в следующей главе.
Глава 35
ПАРАМАГНЕТИЗМ И МАГНИТНЫЙ РЕЗОНАНС
§ 1. Квантованные магнитные состояния
§ 2. Опыт Штерна — Герлаха
§ 3. Метод молекулярных пучков Раби
§ 4. Парамагнетизм
§ 5. Охлаждение адиабатическим размагничиванием
§ 6. Ядерный магнитный резонанс
Повторить: гл. 1 (вып. 5) «Внутреннее устройство диэлектрика
§ 1. Квантованные магнитные состояния
В предыдущей главе мы говорили, что в квантовой механике момент количества движения системы не может иметь произвольного направления, а его компоненты вдоль данной оси могут принимать только определенные дискретные эквидистантные значения. Это поразительная, но характерная особенность квантовой механики. Вам может показаться, что еще слишком рано влезать в такие вещи, что надо подождать, пока вы хоть немного не привыкнете к ним и не будете готовы воспринимать подобные идеи. Но дело в том, что привыкнуть к ним вы никогда не сможете. Вы никогда не сможете легко их воспринимать. Это, пожалуй, самое сложное из всего, что я рассказывал вам до сих пор и, главное, нет способа описать это как-то более вразумительно и не так хитроумно и сложно по форме. Поведение вещества в малых масштабах, как я уже говорил много раз, отличается от всего того, к чему вы привыкли, и поистине весьма странно. Вы, конечно, согласитесь, что было бы неплохо попытаться поближе познакомиться с явлениями в малом масштабе, продолжая одновременно использовать классическую физику, и приобрести поначалу хоть какой-то опыт, пусть даже не понимая всего достаточно глубоко. Понимание этих вещей приходит очень медленно, если оно приходит вообще. Конечно, понемногу начинаешь чувствовать, что может и что не может произойти в данной квантовомеханической ситуации, а это, возможно, и называется «пониманием», но добиться приятного чувства «естественности» квантовомеханических правил здесь невозможно. Они-то, конечно, естественны, но с точки зрения нашего повседневного опыта на привычном уровне остаются очень уж необычными. Мне бы хотелось объяснить вам, что позиция, которую мы собираемся занять по отношению к этому правилу о дискретности значений момента количества движения, совершенно отлична от отношения ко многим другим вещам, о которых шла речь. Я даже не буду пытаться «объяснять» его, но должен хоть рассказать вам, что получается. Было бы нечестно с моей стороны, описывая магнитные свойства материалов, не указать, что классическое объяснение магнетизма, т. е. момента количества движения и магнитного момента, несостоятельно.