Выбрать главу

Вот теперь мы готовы к описанию метода Раби. Здесь мы опишем только, как этот метод измерения магнитных моментов работает в случае частиц со спином 1/2. Схема аппаратуры пока­зана на фиг. 35.5.

Фиг. 35.5. Схема установки Раби в опытах с молекулярными пучками.

Вы видите здесь печь, которая создает поток нейтральных атомов, летящих по прямому пути через три магнита. Магнит 1 — такой же, как и на фиг. 35.2, он создает поле; с большим, скажем положительным, градиентом dBz/dz. Если атомы обладают магнитным моментом, то они будут отклоняться вниз при Jz=+h/2 или вверх приJz =-h/2 (поскольку для электронов m направлен противоположно J). Если мы будем рассматривать только те атомы, которые могут проходить через щель S1, то, как это показано на фиг. 35.5, возможны две траектории. Чтобы попасть в щель, атомы с Jz=+h/2 долж­ны лететь по кривой а, а атомы с Jz=-h/2 — по кривой b. Атомы, вылетающие из печи в другом направлении, вообще не попадут в щель.

Магнит 2 создает однородное поле. В этой области на атомы никакие силы не действуют, поэтому они просто пролетают через нее и попадают в магнит 3. Этот магнит представляет собой копию магнита 1, но с перевернутым полем, так что у него, dBz/dz имеет отрицательный знак. Атомы с Jz=+h/2 (будем говорить «со спином, направленным вверх»), которые в магните 1 отклонялись вниз, в магните 3 будут отклоняться вверх; они продолжат свой полет по траектории а и через щель S2попадут в детектор. Атомы с Jz=-h/2 («со спином, направленным вниз») в магнитах 1 и 3 тоже будут испытывать действие противоположных сил и полетят по траектории b, которая через щель S2тоже приведет их в детектор.

Детектор можно сделать разными способами в зависимости от измеряемых атомов. Так, для щелочных металлов, подобных натрию, детектором может служить тонкая раскаленная вольфрамовая нить, подсоединенная к чувствительному гальванометру. Атомы натрия, оседая на этой нити, испаряются в виде ионов Na+ и оставляют на ней электрон. Возникает ток, про­порциональный числу осевших в 1 сек атомов натрия.

В щели магнита 2 находится набор катушек, которые созда­ют небольшое горизонтальное магнитное поле В'. Эти катушки питаются током, осциллирую­щим с переменной частотой w, так что между полюсами магнита 2 создается сильное вертикальное магнитное поле В0 и слабое осциллирующее гори­зонтальное магнитное поле В'.

Предположим теперь, что частота со осциллирующего поля подобрана равной wp — частоте «прецессии» атомов в поле В. Переменное поле вызовет у некоторых из пролетающих атомов переход от одного значения Jzк другому. Атомы, спины которых были первоначально направлены вверх (Jг=+h/2), могут перевернуться вниз (Jz=-h/2). Теперь магнитный момент этих атомов перевернут, так что в магните 3 они будут чувство­вать силу, направленную вниз, и полетят по траектории а', как показано на фиг. 35.5. Теперь они уже не смогут пройти через щель S2 и попасть в детектор. Точно так же некоторые из атомов, спин которых был первоначально направлен вниз

(Jz=-h/2), перевернутся при прохождении через магнит 2 вверх (Jz=+h/2). После этого они полетят по траектории b' и не попадут в детектор.

Если частота осциллирующего поля В' значительно отли­чается от wp оно не сможет вызвать переворачивания спина и атомы по своим «невозмущенным» орбитам пройдут прямо к детектору. Итак, как видите, можно найти частоту «прецессии» атомов wp в поле В0, подбирая частоту со магнитного поля В', пока не получим уменьшения тока атомов, приходящих в де­тектор. Уменьшение тока будет происходить тогда, когда w попадет «в резонанс» с wp. График зависимости тока в детекторе от со может напоминать кривую, изображенную на фиг. 35.6.

Фиг. 35.6. Количество атомов в пучке при w=w p уменьшается.

Зная w , можно найти величину g для данного атома.

Такой резонансный эксперимент с атомными или, как их часто называют, «молекулярными» пучками представляет очень красивый и точный способ измерения магнитных свойств атом­ных объектов. Резонансную частоту wp можно определить с очень большой точностью, по сути дела значительно точнее, нежели мы способны измерить поле В0, необходимое при на­хождении g.

§ 4. Парамагнетизм

Теперь мне бы хотелось описать явление парамагнетизма вещества. Предположим, имеется вещество, в составе которого имеются атомы, обладающие постоянным магнитным моментом, например кристаллы медного купороса. В этих кристаллах содержатся ионы меди, у которых электроны на внутренних оболочках имеют суммарный момент количества движения и магнитный момент, не равные нулю. Таким образом, ионы меди будут источником постоянного магнитного момента молекул купороса. Буквально несколько слов о том, какие атомы имеют постоянный магнитный момент, а какие — нет. Любой атом, у которого число электронов нечетно, подобно натрию, напри­мер, будет иметь магнитный момент. На незаполненной оболочке натрия имеется один электрон. Этот электрон и определяет спин и магнитный момент атома. Однако обычно при образовании соединения этот дополнительный электрон на внешней оболочке спаривается с другим электроном, направление спина которого в точности противоположно, так что все моменты количества движения и магнитные моменты валентных электронов в точности компенсируют друг друга. Вот почему молекулы, вообще го­воря, не обладают магнитным моментом. Конечно, если у вас есть газ атомов натрия, то там такой компенсации не происхо­дит. Точно так же если у вас есть то, что в химии называется «свободным радикалом», т. е. объект с нечетным числом валент­ных электронов, то связи оказываются неполностью насыщен­ными и появляется ненулевой момент количества движения.

У подавляющего большинства материалов полный магнитный момент появляется только тогда, когда там присутствуют атомы с незаполненной внутренней электронной оболочкой. Благода­ря этому они могут иметь суммарный момент количества дви­жения и магнитный момент. Такие атомы принадлежат к «пере­ходным элементам» периодической таблицы Менделеева, на­пример: хром, марганец, железо, никель, кобальт, палладий и платина — элементы как раз такого сорта. Кроме того, все редкоземельные элементы имеют незаполненную внутреннюю оболочку, а следовательно, и постоянные магнитные моменты. Правда, встречаются еще странные вещества (к числу их отно­сятся жидкий кислород и окись азота), которые, оказывается, тоже обладают магнитным моментом, но объяснить причины этих странностей я предоставляю химикам.

Предположим теперь, что у нас есть ящик, наполненный молекулами или атомами с постоянным магнитным моментом, скажем газ, жидкость или кристалл. Нам хочется знать, что получится, если мы поместим его во внешнее магнитное поле. В отсутствие магнитного поля атомы сбиваются тепловым движением и их магнитные моменты распределяются по всем направлениям. Но когда действует магнитное поле, оно выстра­ивает эти маленькие магнитики, так что магнитных моментов, направленных по полю, становится больше, чем направленных против него. Материал «намагничивается».