Намагниченность М материала мы определяем как полный магнитный момент единицы объема, под которым мы понимаем векторную сумму всех атомных магнитных моментов единицы объема. Если среднее число атомов в единице объема равно N, а их средний момент равен <m>cp, то М можно записать как произведение N на средний магнитный момент:
м = n<m>cp. (35.8)
Это определение М аналогично определению электрической поляризации Р, данному в гл. 10 (вып. 5).
Классическая теория парамагнетизма, как вы уже убедились в гл. 10 (вып. 5), в точности аналогична теории диэлектрической проницаемости. Предполагается, что магнитный момент m каждого из атомов всегда имеет одну и ту же величину, но может быть направлен в любую сторону. Магнитная энергия в поле В равна -m·B=-mBcosq, где q — угол между моментом и полем. Согласно статистической физике, относительная вероятность угла равна e-энергия/kT так что угол 0° более вероятен, чем угол p. Следуя в точности по пути, проделанному нами в гл. 11, § 3 (вып. 5), мы обнаружим, что для слабых магнитных полей М направлена параллельно В и имеет величину
[См. выражение (11.20), вып. 5.] Эта приближенная формула верна, только когда отношение mB/kT много меньше единицы.
Мы нашли, что намагниченность, т. е. магнитный момент единицы объема, пропорциональна магнитному полю. Это явление и называется парамагнетизмом. Вы увидите, что эффект сильнее проявляется при низких температурах и слабее при высоких. При помещении вещества в магнитное поле возникающий в нем магнитный момент в случае слабых полей пропорционален величине поля. Отношение М к В (для слабых полей) называется магнитной восприимчивостью.
Рассмотрим теперь парамагнетизм с точки зрения квантовой механики. Обратимся сначала к атомам со спином 1/2. Если в отсутствие магнитного поля атомы обладают вполне определенной энергией, то в магнитном поле энергия изменится; возможны два значения энергии для разных значений Jz. Для Jz=+h/2
магнитное поле изменяет энергию на величину
(Для атомов сдвиг энергии DU положителен, ибо заряд электрона отрицателен.) Для Jг =-h/2 энергия изменяется на величину
Для сокращения записи обозначим
тогда
DU = ±m0В. (35.13)
Совершенно ясен и смысл m0; — m0равно z-компоненте магнитного момента для спина, направленного вверх, а + m0 равно z-компоненте магнитного момента в случае спина, направленного вниз.
Статистическая механика говорит нам, что вероятность нахождения атома в каком-то состоянии пропорциональна
g - (энергия состояния)/ kT .
В отсутствие магнитного поля энергия обоих состояний одна и та же, поэтому в случае равновесия в магнитном поле вероятности пропорциональны
е-DU/kT, (35.14)
Число же атомов в единице объема со спином, направленным вверх, равно
а со спином, направленным вниз,
Постоянная а должна определяться из условия
Nвверх+Nвниз=N (35.17)
т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем
Однако нас интересует средний магнитный момент в направлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -m0, а со спином, направленным вниз, + m0, так что средний момент будет
Тогда М — магнитный момент единицы объема — будет равен N<m>ср. Воспользовавшись выражениями (35.15)—(35.17), получим
Это и есть квантовомеханическая формула для М в случае атомов со спином j=1/2. К счастью, ее можно записать более коротко через гиперболический тангенс:
График зависимости М он В приведен на фиг. 35.7.
Фиг. 35.7. Изменение намагниченности парамагнетика при изменении напряженности магнитного поля В.
Когда поле В становится очень большим, гиперболический тангенс приближается к единице, а М — к своему предельному значению Nm0. Таким образом, при сильных полях происходит насыщение. Нетрудно понять, почему так получается — ведь при достаточно больших полях все магнитные моменты выстраиваются в одном и том же направлении. Другими словами, при насыщении все атомы находятся в состоянии со спинами, направленными вниз, и каждый из них дает вклад в магнитный момент, равный m0.
Обычно при комнатной температуре и полях, которые можно получить (порядка 10000 гс), отношение m0B/kT равно приблизительно 0,02. Чтобы наблюдать насыщение, необходимо спуститься до очень низких температур. Для комнатной и более высоких температур обычно можно thx заменить на x и написать
Точно так же, как и в классической теории, намагниченность М оказывается пропорциональной полю В. Даже формула оказывается той же самой, за исключением того, что в ней, по-видимому, где-то потерян множитель 1/3. Но нам еще нужно связать m0в квантовомеханической формуле с величиной m, которая появилась в классическом результате, в выражении (35.9).
В классической формуле у нас появилось m2=m·m — квадрат вектора магнитного момента, или
В предыдущей главе я уже говорил, что очень часто правильный ответ можно получить из классических вычислений с заменой J·J на j(j+1)h2. В нашем частном примере j=1/2, так что
j(j+1)h2=3/4h2.
Подставляя этот результат вместо J·J в (35.23), получаем
или, вводя величину m0, определенную соотношением (35.12), получаем
m·m=3m20.
Подставляя это вместо m2 в классическое выражение (35.9), мы действительно воспроизведем истинный квантовомеханический результат — формулу (35.22).
Квантовая теория парамагнетизма легко распространяется на атомы с любым спином j. При этом для намагниченности в слабом поле получим
где
представляет комбинацию постоянных с размерностью магнитного момента. Моменты большинства атомов приблизительно равны этой величине. Она называется магнетоном Бора. Спиновый магнитный момент электрона почти в точности равен
§ 5. Охлаждение адиабатическим размагничиванием
Парамагнетизм имеет одно весьма интересное применение. При очень низкой температуре и в сильном магнитном поле атомные магнитики выстраиваются. При этом с помощью процесса, называемого адиабатическим размагничиванием, можно получить самые низкие температуры. Возьмем какую-то парамагнитную соль, содержащую некоторое число редкоземельных атомов (например, аммиачный нитрат празеодима), и начнем охлаждать ее жидким гелием до 1—2° К в сильном магнитном поле. Тогда показатель mВ/kT будет больше единицы, скажем 2 или 3. Большинство спинов направлено вверх, и намагниченность почти достигает насыщения. Для облегчения давайте считать, что поле настолько велико, а температура так низка, что все атомы смотрят в одном направлении. Теплоизолируйте затем соль (удалив, например, жидкий гелий и создав вакуум) и выключите магнитное поле. При этом температура соли падает.