Как же эта точка зрения согласуется с выражением (36.7)? Прежде всего намагниченность М внутри материала постоянна, так что все ее производные равны нулю. Это согласуется с нашей геометрической картиной. Однако М на поверхности на самом деле не постоянна, она постоянна вплоть до поверхности, а затем неожиданно падает до нуля. Таким образом, непосредственно на поверхности возникает громадный градиент, который в соответствии с выражением (36.7) даст огромную плотность тока. Предположим, что мы наблюдаем за тем, что происходит вблизи точки С на фиг. 36.2. Если выбрать направления осей х и у так, как это показано на фигуре, то намагниченность М будет направлена по оси z. Выписывая компоненты уравнения (36.7), мы получаем
Хотя производная dMz/dy в точке С равна нулю, производная dMz/dx будет большой и положительной. Выражение (36.7) говорит, что в отрицательном направлении оси у течет ток огромной плотности. Это согласуется с нашим представлением о поверхностном токе, текущем вокруг цилиндра.
Теперь мы можем найти плотность тока в более сложном случае, когда намагниченность в материале меняется от точки к точке. Качественно нетрудно понять, что если в двух соседних областях намагниченность различная, то полной компенсации циркулирующих токов не происходит, поэтому полный ток внутри материала не равен нулю. Именно этот эффект мы и хотим получить количественно.
Прежде всего вспомните, что в гл. 14, § 5 (вып. 5), мы выяснили, что циркулирующий ток I создает магнитный момент
m=IА, (36.9)
где А— площадь, ограниченная контуром тока (фиг. 36.3).
Фиг. 36.3. Дипольный момент m кон тура тока равен IA.
Рассмотрим маленький прямоугольный кубик внутри намагниченного материала (фиг. 36.4).
Фиг. 36.4. Небольшой намагниченный кубик эквивалентен циркулирующему поверхностному току.
Пусть кубик будет так мал, что намагниченность внутри него можно считать однородной. Если компонента намагниченности этого кубика в направлении оси z равна Мz, то полный эффект будет таким, как будто по вертикальным граням течет поверхностный ток. Величину этого тока мы можем найти из равенства (36.9). Полный магнитный момент кубика равен произведению намагниченности на объем:
m=M z (abc),
откуда, вспоминая, что площадь равна ас, получаем
I=М z b.
Другими словами, на каждой из вертикальных поверхностей величина тока на единицу длины по вертикали равна Мz.
Представьте теперь два таких маленьких кубика, расположенных рядом друг с другом (фиг. 36.5).
Фиг. 36.5. Если намагниченность двух соседних кубиков различна, то на их границе течет поверхностный ток.
Кубик 2 несколько смещен по отношению к кубику 1, поэтому его вертикальная компонента намагниченности будет немного другой, скажем Mz+DМz. Теперь полный ток на поверхности между этими двумя кубиками будет слагаться из двух частей. По кубику 1 в положительном направлении по оси у течет ток I1, а по кубику 2 в отрицательном направлении течет ток I2. Полный поверхностный ток в положительном направлении оси у будет равен сумме
I=I1-I2=Мzb-(Мz+DМz)b=-DMzb.
Величину DМгможно записать в виде произведения производной от Mzпо х на смещение кубика 2 относительно кубика 1, которое как раз равно а:
DMz=(дMz /дx)а. Тогда ток, текущий между двумя кубиками, будет равен
I=(-дMz/дx)ab.
Чтобы связать ток I со средней объемной плотностью тока j, необходимо понять, что этот ток на самом деле размазан по некоторой области поперечного сечения. Если мы вообразим, что такими маленькими кубиками заполнен весь объем материала, то за такое сечение (перпендикулярное оси х) может быть выбрана боковая грань одного из кубиков. Теперь вы видите, что площадь, связанная с током, как раз равна площади ab одной из фронтальных граней. В результате получаем
Наконец-то у нас начинает получаться ротор М.
Но в выражении для jyдолжно быть еще одно слагаемое, связанное с изменением x-компоненты намагниченности с изменением z. Этот вклад в j происходит от поверхности между двумя маленькими кубиками, поставленными друг на друга (фиг. 36.6).
Фиг. 36.6. Два кубика, расположенных один над другим, тоже могут давать вклад в j y .
Воспользовавшись только что проведенными рассуждениями, мы можем показать, что эта поверхность будет давать в величину jy вклад, равный dMx/dz. Только эти поверхности и будут давать вклад в y-компоненту тока, так что полная плотность тока в направлении оси у получается равной
Определяя токи на остальных гранях куба или используя тот факт, что направление оси z было выбрано совершенно произвольно, мы можем прийти к заключению, что вектор плотности тока действительно определяется выражением .
j=СXM.
Итак, если вы решили описывать магнитное состояние вещества через средний магнитный момент единицы объема М, то оказывается, что циркулирующие атомные токи эквивалентны средней плотности тока в веществе, определяемой выражением (36.7). Если же материал обладает вдобавок еще диэлектрическими свойствами, то в нем может возникнуть и поляризационный ток jпол=dP/dt. А если материал к тому же и проводник, то в нем может течь и ток проводимости jпров. Таким образом, полный ток можно записать как
J = Jпрoв+СXM+дP/дt; (36.10)
§ 2. Поле Н
Теперь можно подставить выражение для тока (36.10) в уравнение Максвелла. Мы получаем
Слагаемое с М можно перенести в левую часть:
Как мы уже отмечали в гл. 32, иногда удобно записывать (Е+Р/e0) как новое векторное поле D/e0. Точно так же удобно (В-М/e0с2) записывать в виде единого векторного поля. Такое поле мы обозначим через Н, т. е.
H=В-M/(e0c2). (36.12)
После этого уравнение (36.11) принимает вид
e0c2СXH=jnpов+дD/дt. (36.13)
Выглядит оно просто, но вся его сложность теперь скрыта в буквах D и Н.