Выбрать главу

Хочу предостеречь вас. Большинство людей, которые при­меняют систему СИ, пользуются другим определением Н. На­зывая свое поле через Н' (они, конечно, не пишут штриха), они определяют его как

Н'=e0с2В-М. (36.14)

(Кроме того, величину e0с2 они обычно записывают в виде l/m0, так что появляется еще одна постоянная, за которой все время нужно следить!) При таком определении уравнение (36.13) будет выглядеть еще проще:

СXH' = jnpoв+дD/дt. (36.15)

Но трудность здесь заключается в том, что такое определение, во-первых, не согласуется с определением, принятым теми, кто не пользуется системой СИ, и, во-вторых, поля Н' и В изме­ряются в различных единицах. Я думаю, что Н удобнее изме­рять в тех же единицах, что и В, а не в единицах М, как Н'. Но если вы собираетесь стать инженером и проектировать транс­форматоры, магниты и т. п., то будьте внимательны. Вы столк­нетесь со множеством книг, где в качестве определения Н используется уравнение (36.14), а не (36.12), а в других книгах, особенно в справочниках о магнитных материалах, связь между В и Н такая же, как и у нас. Нужно быть внимательным и по­нимать, какое где использовано соглашение.

Одна из примет, указывающих нам на соглашение,— это единицы измерения. Напомним, что в системе СИ величина В, а следовательно, и наше Н измеряются в единицах вб/м2 (1 вб/м2=10 000 гс). Магнитный же момент (т. е. произведение тока на площадь) в той же системе СИ измеряется в единицах а·м2. Тогда намагниченность М имеет размерность а/м. Размерность Н' та же, что и размерность М. Нетрудно видеть, что это согла­суется с уравнением (36.15), поскольку у имеет размерность обратной длины.

Те, кто работает с электромагнитами, привыкли измерять поле Н (определенное как Н') в ампер-витках/метр, имея при этом в виду витки провода в обмотке. Но «виток» ведь фактически величина безразмерная, и она не должна вас смущать. Посколь­ку наше Н равно H'/e0c2, то, если вы пользуетесь системой СИ, Н вб/м) равно произведению 4p·10-7 на Н'(в а/м). Может быть, более удобно помнить, что Н гс) равно 0,0126 H' а/м).

Здесь есть еще одна ужасная вещь. Многие люди, исполь­зующие наше определение Н, решили назвать единицы измере­ния Н и В по-разному! И даже несмотря на одинаковую размер­ность, они называют единицу В гауссом, а единицу Нэрсте­дом (конечно, в честь Гаусса и Эрстеда). Таким образом, во многих книгах вы найдете графики зависимости В в гауссах от Н в эрстедах. На самом деле это одна и та же единица, равная 10-4 единиц СИ. Эту неразбериху в магнитных единицах мы увековечили в табл. 36.1.

Таблица 36.1 · ЕДИНИЦЫ МАГНИТНЫХ ВЕЛИЧИН

§ 3. Кривая намагничивания

Рассмотрим теперь некоторые простые случаи, когда маг­нитное поле остается постоянным или изменения поля настолько медленны, что можно пренебречь dD/dt по сравнению с jnpoв. В этом случае поля подчиняются уравнениям

СXB=0, (36.16)

СXH=jпров/e0c2, (36.17)

H=B-M/e0c2. (36.18)

Предположим, что у нас есть железный тор с намотанной на него медной проволокой, как это показано на фиг. 36.7, а.

Фиг. 36.7. Железный тор, обмотанный витками изолированного провода (а), и его поперечное сечение (б). Показаны силовые линии.

Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б) силовые линии должны быть круговыми. Вследствие постоянства потока В его дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б. Из теоремы Стокса мы получаем

где интеграл от j берется по поверхности S, ограниченной кон­туром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I, а пос­кольку всего витков N штук, то интеграл будет равен NI. Из симметрии нашей задачи видно, что В одинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Н тоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид

где l—длина кривой Г. Таким образом,

Именно из-за того что в задачах подобного типа поле Н прямо пропорционально намагничивающему току, оно иногда назы­вается намагничивающим.

Единственное, что нам теперь требуется,— это уравнение, связывающее Н с В. Однако такого уравнения просто не суще­ствует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между М и В. Намагниченность М зависит от всей предыдущей истории данного образца железа, а не толь­ко от того, каково поле В в данный момент и как оно изменялось раньше.

Впрочем, еще не все потеряно. В некоторых простых слу­чаях мы все же можем найти решение. Если взять ненамагни­ченное железо, скажем, отожженное при высокой температуре, то для такого простого тела, как тор, магнитная предыстория всего железа будет одной и той же. Затем из экспериментальных измерений мы можем кое-что сказать относительно М, а следо­вательно, и о связи между В и Н. Из уравнения (36.20) видно, что поле В внутри тора равно произведению некоторой посто­янной на величину тока в обмотке I. А поле В можно измерить интегрированием по времени э.д.с. в намагничивающей обмотке, изображенной на рисунке (или в дополнительной обмотке, на­мотанной поверх нее). Эта э.д.с. равна скорости изменения по­тока В, так что интеграл от э.д.с. по времени равен произведе­нию В на площадь поперечного сечения тора.

На фиг. 36.8 показано соотношение между В и Н, наблюда­емое в сердечнике из мягкого железа.

Фиг. 36.8. Типичная кривая намагничивания и петля гис­терезиса мягкого железа.

Когда ток включается в первый раз, увеличение В с Н происходит по кривой а. Обра­тите внимание на различие масштабов по осям В и Н; вначале, чтобы получить большое В, необходимо относительно малое Н. Почему же в случае железа поле В намного больше, чем было бы без него? Да потому, что возникает большая намагниченность М, эквивалентная большому поверхностному току в железе, а поле определяется суммой этого тока и тока проводимости в обмотке. А почему намагниченность М оказывается такой боль­шой, мы обсудим позднее.

При больших значениях Н кривая намагничивания «вырав­нивается». Мы говорим, что железо насыщается. В масштабах нашей фигуры кривая становится горизонталь­ной, на самом же деле намагниченность продол­жает слабо расти: для больших полей В становит­ся равным Н и намагни­ченность М уже не увели­чивается. Кстати, если бы сердечник был сделан из немагнитного материала, то намагниченность М была бы равна нулю, а В было бы равно для всех полей Н.