Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае существуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наивысших симметрии — на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.
Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убога фантазия художников или, может быть, многие из возможных типов рисунков не будут радовать глаз?
§ 6. Симметрии в трех измерениях
До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересуемся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.
Фиг. 30.10. Семь классов кристаллической решетки.
Решетка с наименьшей симметрией называется триклинной. Ее элементарная ячейка представляет собой параллелепипед. Основные векторы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при инверсии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подразумеваем, что пространственное смещение R заменяется на -R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x,-y, -z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все векторы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.
Если один из основных векторов, скажем с, направлен под прямым углом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональная решетка — это частный случай, когда векторы а и b равны и угол между ними составляет 60°, так что вращение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).
Если все три основных вектора перпендикулярны друг другу, но не равны по длине, получается ромбическая ячейка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого порядка возникают у тетрагональной ячейки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.
Основной смысл всего этого разговора о типах симметрии состоит в том, что внутренняя симметрия кристалла проявляется (иногда весьма тонким образом) в макроскопических физических свойствах кристалла. В гл. 31 мы увидим, например, что электрическая поляризуемость кристалла, вообще говоря, представляет собой тензор. Если описывать тензор в терминах эллипсоида поляризуемости, то мы должны доказать, что некоторые типы симметрии кристалла проявятся в этом эллипсоиде. Так, кубический кристалл симметричен по отношению к вращению на 90° вокруг любого из трех взаимно перпендикулярных направлений. Единственный эллипсоид с таким свойством,—очевидно, сфера. Кубический кристалл должен быть изотропным диэлектриком.
С другой стороны, тетрагональный кристалл обладает вращательной симметрией четвертого порядка. Две главные оси его эллипсоида должны быть равны, а третья должна быть параллельна оси кристалла. Аналогично, поскольку ромбический кристалл обладает вращательной симметрией второго порядка относительно трех перпендикулярных осей, его оси должны совпадать с осями эллипсоида поляризуемости. Точно так же одна из осей моноклинного кристалла должна быть параллельна одной из главных осей эллипсоида, хотя о других осях мы ничего сказать не можем. Триклинный кристалл не обладает вращательной симметрией, поэтому его эллипсоид может иметь любую ориентацию.
Как видите, мы можем с пользой провести время, придумывая всевозможные типы симметрии и связывая их со всевозможными физическими тензорами. Мы рассмотрели только тензор поляризуемости, здесь дело было простое, а для других тензоров, например для тензора упругости, рассуждать будет труднее. Существует раздел математики, называемый «теорией групп», который занимается такими вещами, но обычно можно сообразить все, что нужно, опираясь лишь на здравый смысл.
§ 7. Прочность металлов
Мы говорили, что металлы обычно имеют простую кубическую кристаллическую структуру; сейчас мы обсудим их механические свойства, которые зависят от этой структуры. Вообще говоря, металлы очень «мягкие», потому что один слой кристалла легко заставить скользить над другим. Вы, наверное, подумаете: «Ну, это дико — металлы ведь твердые». Нет, монокристалл металла легко деформируется.
Рассмотрим два слоя кристалла, подвергающихся действию силы сдвига (фиг. 30.11, а).
Фиг. 30.11. Сдвиг плоскостей кристалла.
Вероятно, вы сперва решите, что весь слой будет сопротивляться сдвигу, пока сила не станет достаточно велика, чтобы сдвинуть весь слой «над горбами» на одно место влево. Хотя скольжение по некоторой плоскости возможно, все происходит совсем не так. (Иначе, согласно вычислениям, получилось бы, что металл гораздо прочнее, чем он есть на самом деле.) В действительности же дело больше походит на то, что атомы перескакивают поочередно: сначала прыгает первый атом слева, затем следующий и т. д., как показано на фиг. 30.11, б. В результате пустое место между двумя атомами быстро путешествует направо и весь второй ряд сдвигается на одно межатомное расстояние. Скольжение происходит таким образом, что на перекатывание атома через горб поодиночке требуется гораздо меньше энергии, чем на поднятие всего ряда в целом. Как только сила возрастет до значения, достаточного для начала процесса, весь процесс протекает очень быстро.
Оказывается, что в реальном кристалле скольжение возникает поочередно: сначала в одной плоскости, затем заканчивается там и начинается в другом месте. Почему оно начинается и почему заканчивается — совершенно непонятно. В самом деле, очень странно, что последовательные области скольжения часто расположены довольно редко. На фиг. 30.12 представлена фотография очень маленького и тонкого кристалла меди, который был растянут.
Фиг. 30.12. Маленький кристалл меди после растяжения.
Вы можете заметить разные плоскости, в которых возникало скольжение.
Неожиданное соскальзывание отдельных кристаллических плоскостей легко заметить, если взять кусок оловянной проволоки, в которой содержатся большие кристаллы, и растягивать ее, держа близко к уху. Вы ясно различите звуки «тик-тик», когда плоскости защелкиваются в новых положениях, одна за другой.