Выбрать главу

* Если бы все «другие» заряды находились на проводниках, то r др было бы тем же самым, что и r своб в гл. 10 (вып. 5).

Глава 37

МАГНИТНЫЕ МАТЕРИАЛЫ

§ 1.Сущность ферромагнетизма

§ 2.Термодинамические свойства

§ 3. Петля гистерезиса

§ 4.Ферромагнитные материалы

§ 5.Необычные магнитные материалы

§ 1. Сущность ферромагнетизма

В этой главе мы поговорим об особенностях и поведении ферромагнетиков и некоторых дру­гих необычных магнитных материалов. Но перед тем как приступить к этой теме, я сделаю ма­ленький обзор некоторых вопросов общей тео­рии магнитов, которые мы изучали в предыду­щей главе.

Мы сначала представили себе «магнитные» токи, текущие внутри материала и порождаю­щие магнетизм, а затем стали их описывать через объемную плотность токов jмar=СXM. Заметьте, что эти токи нереальные. Даже когда намагниченность вещества однородна, токи в нем на самом деле не исчезают полностью: кру­говые токи электрона в одном атоме и круговые токи электрона в другом атоме, перекрываясь, не дают в сумме точно нуль. Даже внутри каждого отдельного атома распределение магне­тизма не очень гладкое. В атоме железа, напри­мер, намагниченность распределена более или менее по сферической поверхности не слишком близко к ядру, но и не слишком далеко от него. Таким образом, магнетизм в веществе — вещь довольно сложная в своих деталях и весьма нерегулярная. Но сейчас мы должны об этих сложностях забыть и рассматривать явление, пользуясь более грубой усредненной моделью. Только тогда становится верным утверждение о равенстве нулю среднего тока при М=0 в ог­раниченной внутренней области, большой по сравнению с размерами атома. Таким образом, под магнитным моментом единицы объема (намагниченностью) и под jмаг и т. п. на нашем теперешнем уровне рассмотрения мы понимаем среднее по областям, большим по сравнению с пространст­вом, занимаемым отдельным атомом.

В предыдущей главе мы обнаружили, что ферромагнитные материалы обладают следующим интересным свойством: при температурах выше некоторой их магнитные свойства проявля­ются слабо и лишь ниже этой температуры они становятся сильными магнетиками. Этот факт легко продемонстрировать. Кусок никелевого провода при комнатной температуре притя­гивается магнитом. Но если мы его нагреем в пламени газовой горелки выше температуры Кюри, то он станет практически немагнитным и не будет притягиваться к магниту, даже если мы поднесем его совсем близко. Если же оставить его остывать возле магнита, то в тот момент, когда его температура упадет ниже критической, он внезапно снова притянется к магниту!

В общей теории магнетизма, которой мы пользуемся, пред­полагается, что за намагниченность ответствен спин электрона. Спин электрона равен 1/2 и сопровождается магнитным момен­том, равным одному магнетону Бора: (m=mb=qeh/2m. Спин электрона может быть направлен либо вверх, либо вниз. Поскольку заряд электрона отрицателен, то магнитный момент его направлен вниз, когда спин направлен вверх, и направлен вверх, когда спин направлен вниз. В соответствии с нашим обычным соглашением магнитный момент электрона (А — число отрицательное. Мы нашли, что потенциальная энергия магнит­ного диполя в заданном приложенном поле В равна—m·B. Энергия вращающегося электрона зависит также и от распо­ложения соседних спинов. Если в железе момент соседнего атома направлен вверх, то момент следующего атома имеет сильную тенденцию тоже направиться вверх. Именно это делает железо, кобальт и никель такими сильными магнети­ками — все моменты атомов в них стремятся быть параллель­ными. И вот первый вопрос, который мы должны обсудить, — почему так происходит?

Вскоре после развития квантовой механики было замечено, что существуют чрезвычайно мощные кажущиеся силы (однако не магнитные и не другие известные силы), которые стараются выстроить спины соседних электронов противоположно один другому. Эти силы тесно связаны с силами химической валент­ности. В квантовой механике есть так называемый принцип запрета, который говорит, что два электрона не могут зани­мать в точности одно и то же состояние, т. е. они не могут нахо­диться в тех же самых условиях в смысле положения и ориен­тации спина. Если два электрона находятся в одном и том же месте, то единственной возможностью им различаться будет только противоположное направление их спинов. Таким об­разом, если между атомами имеется область пространства, где скапливаются электроны(так происходит при химической связи), и если на сидящий уже там электрон нам захочется посадить другой, то единственный способ это сделать — направить спин второго электрона противоположно спину первого. Параллель­ность спинов противоречит принципу запрета, если, конечно, электроны расположены в одной точке. В результате пара близ­ких друг к другу электронов с параллельными спинами обла­дает гораздо большей энергией, нежели пара электронов с про­тивоположными спинами; в целом же эффект будет таким, как будто действует сила, старающаяся развернуть спины противо­положно друг другу. Иногда такие «спин-вращающие» силы на­зываются обменными, но это название только увеличивает таин­ственность, так что термин этот не слишком удачен. Стремление электронов иметь противоположные спины обязано просто принципу запрета. Но фактически это объясняет отсутствие магнетизма почти у всех веществ! Спины свободных электронов на окраине атомов стремятся уравновешиваться в противопо­ложных направлениях. Проблема заключается в том, чтобы объяснить, почему же материалы, подобные железу, ведут себя совсем не так, как ожидается.

Предполагаемый эффект выстраивания мы учитывали добав­лением в выражение для энергии подходящего слагаемого, приговаривая, что если соседние электронные магнитики дают среднюю намагниченность М, то магнитный момент электрона имеет сильную тенденцию смотреть в том же самом направлении, что и средняя намагниченность соседних атомов. Таким обра­зом, для двух возможных ориентации спинов можно написать:

Когда стало ясно, что квантовая механика может объяснить нам огромные спин-ориентирующие силы, пусть даже с очевид­но неправильным знаком, то было предложено, что ферромаг­нетизм возникает именно за счет этих сил, но что вследствие сложности железа и большого числа участвующих в игре элект­ронов знак энергии электронов получается обратным. Как толь­ко это стало ясно, т. е. примерно с 1927 г., когда была понята квантовая механика, многие исследователи стали делать разные оценки, прикидки, полуподсчеты, стремясь получить тео­ретически величину К. Но все равно наиболее поздние вычисле­ния энергии взаимодействия между двумя электронными спи­нами в железе, предполагавшие прямое взаимодействие между двумя электронами в соседних атомах, дали неправильный знак. Сейчас, описывая это явление, говорят, что за все как-то ответ­ственна сложность ситуации и что есть надежда, что кому-то, кто сумеет проделать вычисления для более сложного случая, удастся получить правильный ответ!

Полагают, что направленный вверх спин одного из электро­нов внутренней оболочки, который ответствен за магнетизм, стремится заставить спины электронов проводимости, витаю­щих вокруг него, повернуться в противоположную сторону. Можно надеяться, что это ему вполне удастся, ибо электроны проводимости движутся в той же самой области, что и «магнит­ные» электроны. А поскольку они движутся то туда, то сюда, то могут передать свой приказ перевернуться «вверх ногами» спинам электронов других атомов; таким образом, «магнитный» электрон заставляет электрон проводимости направить спин в противоположную сторону, а тот в свою очередь заставляет следующий «магнитный» электрон направить свой спин проти­воположно его спину. Это двойное взаимодействие эквивалентно взаимодействию, стремящемуся выстроить два «магнитных» электрона в одном направлении. Иными словами, тенденция соседних спинов быть параллельными есть результат действия промежуточной среды, которая в некотором смысле стремится быть противоположной им обоим. Этот механизм не требует, чтобы все электроны проводимости были повернуты «вверх ногами». Достаточно, чтобы они лишь слегка стремились по­вернуться вниз, и шансы «магнитных» электронов повернуться вверх перевесят. Как полагают те исследователи, которые рабо­тали с этими вещами, это и есть тот механизм, который ответ­ствен за ферромагнетизм. Но должен отметить, что вплоть до сегодняшнего дня никто не может вычислить величину l мате­риала, зная просто, что в периодической системе элементов этот материал стоит, скажем, под номером 26. Короче говоря, мы все еще не можем понять явление до конца.