Выбрать главу

Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным ку­бом. Его «вертикальный» размер будет отличаться от «горизон­тального».Этот эффект называется магнитострикцией. В ре­зультате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г, не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске нена­магниченного железа.

А что получится, если мы приложим внешнее магнитное по­ле? В качестве простого примера рассмотрим кристалл, домены которого показаны на фиг. 37.4, д. Если мы приложим магнит­ное поле, направленное вверх, то как будет происходить намагничивание кристалла? Прежде всего средняя доменная стен­ка может передвинуться в сторону (направо) и уменьшить энер­гию. Она перемещается таким образом, чтобы область направления «вверх» стала больше области направления «вниз», Элементарных магнитиков, направленных по полю, становится больше, а это приводит к понижению энергии. Таким образом, в куске железа в слабых магнитных полях с самого начала на­магничивания доменная стенка начнет двигаться и «съедать» области, намагниченные противоположно полю. По мере того как поле продолжает увеличиваться, весь кристалл постепенно превращается в один большой домен, в котором внешнее поле помогает сохранять направление «вверх». В сильном магнит­ном поле кристаллы намагничиваются в одну сторону как раз потому, что их энергия в приложенном поле уменьшается. Внешнее магнитное поле кристаллов теперь уже не так сущест­венно.

А что если геометрия кристалла не так проста? Что если какая-то ось кристалла и его спонтанная намагниченность нап­равлены в одну сторону, а мы прилагаем поле, направленное в другую, скажем под углом 45°? Можно думать, что домены по­вернутся так, чтобы их намагниченность стала параллельной полю, а затем они, как и прежде, смогут слиться в один домен. Но сделать это для железа нелегко, ибо энергия, необходимая для намагничивания кристалла, зависит от направления намаг­ничивающего поля относительно кристаллической оси. Намаг­нитить железо в направлении, параллельном кристаллической оси, относительно легко, но для того чтобы намагнитить его в каком-то другом направлении, скажем под углом 45° к на­правлению оси, энергии требуется больше. Следовательно, если в таком направлении приложить магнитное поле, то сначала происходит рост доменов, намагниченных в одном из избран­ных направлений, близких к направлению приложенного поля, пока в эту сторону не будет направлена намагниченность всех областей. Затем при гораздо больших полях общая намагниченность постепенно поворачивается к направ­лению поля, как это показано на фиг. 37.5.

Фиг. 37.5. Намагничивающее поле Н, направленное под некоторым углом к кристаллической оси, посте­пенно изменяет направление намагниченности М, не изменяя ее величины.

На фиг. 37.6 показаны полученные из опыта кривые намагничивания монокристал­лов железа.

Фиг. 37.6. График компоненты М, параллельной полю Н, при раз­личных направлениях Н(по отношению к осям кристалла).

Чтобы вы поняли их, я пред­варительно должен объяснить кое-какие обозначения, используемые для описания направлений в кристалле. Существует мно­го способов расслоения кристалла на плос­кости, в которых расположены атомы.

Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую,— вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz. Она называется плос­костью (100), так как обратные величины отрезков, отсекае­мых этой плоскостью по осям у и z, равны нулю.

Фиг. 37.7. Способы обозначения кристаллических плоскостей.

Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квад­ратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и. z. Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).

Вернемся теперь к фиг. 37.6. На ней мы видим кривые на­магничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь сла­бых, что в нашем масштабе их трудно изобразить, намагничен­ность чрезвычайно быстро возрастает до весьма больших зна­чений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы пе­редвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совер­шенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до на­сыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при боль­ших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать боль­шей намагниченности, она уже равна Mнас— значит, спины всех электронов направлены вверх.

Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под уг­лом 45° к оси х? Мы включаем небольшое поле, и намагничен­ность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достиже­ния насыщения поле должно быть довольно большим, ибо век­тор намагниченности нужно повернуть в сторону от направле­ния легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с верти­кальной осью должна будет давать значение намагниченно­сти, составляющее 1/Ц2от намагниченности насыщения. Ока­зывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/Ц2. Аналогично для направ­ления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вер­тикальную ось на расстоянии, составляющем 1/Ц2 от значе­ния, соответствующего насыщению.