Выбрать главу

Существуют специальные материалы, которые были приду­маны для получения особых магнитных свойств. О некоторых из них я хочу рассказать. Если нужно сделать постоянный магнит, то требуется найти материал с необычно широкой пет­лей гистерезиса, чтобы при выключении тока, когда мы спу­стимся к нулевому намагничивающему полю, намагниченность все же осталась большой. Для таких материалов границы до­менов должны быть «заморожены» на месте как можно крепче. Одним из таких материалов является замечательный сплав АлникоV (51% Fe, 8% Аl, 14% Ni, 24% Со, 3% Cu). Доволь­но сложный состав этого сплава говорит о том кропотливом труде, который надо было затратить, чтоб создать хороший магнит. Сколько терпения потребовалось для того, чтобы, смешивая по-разному пять компонент, проверять раз­ные составы их до тех пор, пока не был найден идеальный сплав! Когда АлникоV затвердевает, у него появляется «вторая фаза», которая, осаждаясь, образует множество ма­леньких зерен и вызывает очень большие внутренние напряжения. Движение доменных стенок в этом материале очень затруднено. А чтобы получить вдобавок нужное строение, Алнико V механически «обрабаты­вается» так, чтобы кристаллы выстраивались в форме продол­говатых зерен в направлении будущей намагниченности. При этом намагниченность, естественно, стремится смотреть в нуж­ном направлении и противостоять эффектам анизотропии. Бо­лее того, в процессе приготовления материал даже охлаждается во внешнем магнитном поле, так что зерна растут с правильной ориентацией кристаллов. Петля гистерезиса АлникоV приве­дена на фиг. 37.12.

Фиг. 37.12. Петля гистере­зиса сплава АлникоV.

Видите, она в 500 раз шире петли гистерезиса мягкого железа, которую я вам показывал (см.фиг.36.8, стр.146). Обратимся теперь к другим сортам материалов. Для изготов­ления трансформаторов и моторов необходим материал, который был бы «мягким» в магнитном отношении, т. е. такой, намагни­ченность которого могла бы легко изменяться, так что даже очень малое приложенное поле приводило бы к очень большой намагниченности. Для этого нужны чистые, хорошо отожжен­ные материалы с очень малым количеством дислокаций и при­месей, так чтобы доменные стенки могли легко двигаться. Ани­зотропию желательно сделать как можно меньше. Тогда если даже зерна материала расположены под «неправильным» углом по отношению к полю, материал все равно будет легко намаг­ничиваться. Мы говорили, что железо предпочитает намагничи­ваться в направлении [100], тогда как никель предпочитает направление [111], так что если мы будем в различных пропор­циях смешивать железо и никель, то можно надеяться найти такую их пропорцию, когда сплав не будет иметь никакого предпочтительного направления, т. е. направления [100] и [111] будут эквивалентны. Оказывается, что это достигается при смешивании 70% никеля и 30% железа. Вдобавок (вероят­но, по счастливой случайности, а быть может, по какой-то фи­зической взаимосвязи между анизотропией и магнитострикционными эффектами) оказалось, что константы магнитострик­ции железа и никеля имеют противоположные знаки. Для сплава этих двух металлов магнитострикция исчезает при со­держании никеля около 80%. Так что при содержании никеля где-то между 70 и 80% у нас получаются очень «мягкие» маг­нитные материалы — сплавы, которые очень легко намагничи­ваются. Они называются пермаллоями. Пермаллои используют­ся в высококачественных трансформаторах (при низких уров­нях сигналов), но совершенно не годятся для постоянных маг­нитов. Приготовлять пермаллои и работать с ними нужно очень осторожно. Магнитные свойства пермаллоя в корне меняются, если его деформировать выше предела его упругости, так что этот материал никоим образом нельзя сгибать. Иначе в резуль­тате возникновения дислокаций, поверхностей скольжения и других механических деформаций проницаемость его умень­шается и границы доменов уже будут двигаться не так легко. Впрочем, былую высокую проницаемость можно восстановить отжигом при высокой температуре.

Полезно для характеристики различных магнитных мате­риалов оперировать какими-то числами. Двумя такими харак­теристиками являются значения В и Н в точках пересече­ния петли гистерезиса с осями координат (фиг. 37.12). Эти значения называются остаточным магнитным полем Вrи коэрцитивной силой Нс. В табл. 37.1 приведены эти характе­ристики для некоторых материалов.

§ 5. Необычные магнитные материалы

Здесь мне бы хотелось рассказать о некоторых более экзо­тических магнитных материалах. В периодической таблице есть немало элементов, имеющих незаполненные внутренние электронные оболочки, а следовательно, и атомные магнит­ные моменты. Так, сразу вслед за ферромагнитными элемента­ми — железом, никелем и кобальтом — вы найдете хром и мар­ганец. Почему же они не ферромагнитны? Ответ заключается в том, что в выражении (37.1) член с К для этих элементов имеет противоположный знак. В решетке хрома, например, направле­ния магнитных моментов атомов чередуются друг за другом (фиг. 37.13, б).

Фиг. 37.13. Относительная ориентация элек­тронных спинов в различных материалах:

а — ферромагнетик;, б — антиферромагнетик; в — феррит.

Так что со своей точки зрения хром все же «магнетик», но с точки зрения технических применений это не пред­ставляет интереса, так как не дает внешнего магнитного эффекта. Таким образом, хром — пример материала, в котором кванто-вомеханический эффект вызывает чередование направлений спинов. Такой материал называется антиферромагнетиком. Упорядочивание магнитных моментов в антиферромагнитных материалах зависит и от температуры. Ниже критической тем­пературы все спины выстраиваются в чередующейся последо­вательности, но если материал нагрет выше определенной тем­пературы, которая по-прежнему называется температурой Кюри, направления спинов внезапно становятся случайными. Этот рез­кий внутренний переход можно наблюдать на кривой удельной теплоемкости. Он проявляется еще в некоторых особых «маг­нитных» эффектах. Например, существование чередующихся спинов можно проверить по рассеянию нейтронов на кристалле хрома. Нейтрон сам по себе имеет спин (и магнитный момент), поэтому амплитуда его рассеяния различна в зависимости от того, параллелен ли его спин спину рассеивателя или противо­положен. В результате нейтронная интерференционная карти­на для чередующихся спинов отлична от картины при случай­ном их распределении.