Выбрать главу

Проблема «нехватки» атома в одном из ря­дов сложнее, чем может показаться при рассма­тривании фиг. 30.11.

Когда слоев больше, си­туация скорее походит на то, что изображено на фиг. 30.13.

Фиг. 30.13. Дислокация в кристалле.

Подобный дефект в кристалле называют дислокацией. Считается, что такие дислокации возникают при образовании кри­сталла или же в результате царапины или трещины на его поверхности. Раз возникнув, они довольно свободно могут проходить сквозь кристалл. Большие на­рушения возникают из-за движения множества таких дислокаций.

Дислокации могут свободно передвигаться. Это значит, что для них требуется немного дополнительной энергии, если только весь остальной кристалл имеет совершенную решетку. Но они могут и «застыть», встретив какой-нибудь другой дефект в кристалле. Если для прохождения дефекта требуется много энергии, они остановятся. Это и есть тот механизм, который сообщает прочность несовершенным кристаллам металла. Кри­сталлы чистого железа совсем мягкие, но небольшая концент­рация атомов примесей может вызвать достаточное количество дефектов, чтобы противостоять дислокациям. Как вы знаете, сталь, состоящая в основном из железа, очень тверда. Чтобы получить сталь, при плавке к железу примешивают немного углерода; при быстром охлаждении расплавленной массы угле­род выделяется в виде маленьких зерен, образуя в решетке множество микроскопических нарушений. Дислокации уже не могут свободно передвигаться, и металл становится твердым.

Чистая медь очень мягкая, но ее можно «закалить» накле­пом. Это делается отбиванием или сгибанием ее в одну и другую стороны. В таком случае образуется много различных дисло­каций, которые взаимодействуют между собой и ограничивают подвижность друг друга. Быть может, вы видели фокус, когда берут кусочек «мягкой» меди и легко обвивают чье-нибудь запястье в виде браслета. В тот же момент медь становится закаленной и разогнуть ее становится очень трудно! «Закаленный» металл типа меди можно снова сделать мягким с помощью от­жига при высокой температуре. Тепловое движение атомов «размораживает» дислокации и вновь создает отдельные боль­шие кристаллы. О дислокациях можно рассказывать очень много. Так, до сих пор мы описывали только так называемые «дислокации скольжения» (краевые дислокации). Существует еще множество других видов, в частности винтовая дислокация, изображенная на фиг. 30.14.

Фиг. 30.14. Винтовая дислокация.

Такие дислокации часто играют важную роль в росте кристаллов.

§ 8. Дислокации и рост кристаллов

Одну из величайших загадок природы долгое время пред­ставлял процесс роста кристаллов. Мы уже описывали, как атом, многократно примериваясь, может определить, где ему лучше — в кристалле или снаружи. Но отсюда следует, что каждый атом должен найти положение с наименьшей энергией. Однако атом, попавший на новую поверхность, связан только одной-двумя связями с нижними атомами, и его энергия при этом не равна энергии того атома, который попал в угол, где он окружен атомами с трех сторон. Вообразим растущий кри­сталл как набор из кубиков (фиг. 30.15).

Фиг. 30.15. Схематическое представление роста кристалла.

Если мы поставим новый кубик, скажем, в положение А, он будет иметь только одного из тех шести соседей, какими он в конце концов будет окружен. А раз не хватает стольких связей, то и энергия его не будет очень низкой. Более выгодно положение В, где кри­сталл уже имеет половину своей доли связей. И действительно, кристаллы растут, присоединяя новые атомы к участкам типа В.

Но что произойдет, когда данный ряд завершится? Чтобы начать новый ряд, атом должен осесть, имея связь с двух сторон, а это опять же маловероятно. Даже если он осядет, что прои­зойдет, когда весь слой будет завершен? Как мог бы начаться новый слой? Один из возможных ответов — кристалл предпочи­тает расти по дислокации, например по винтовой дислокации, вроде той, что показана на фиг. 30.14. По мере прибавления кубиков к этому кристаллу всегда остается место, где можно получить три связи. Следовательно, кристалл предпочитает расти с встроенной внутрь дислокацией. Иллюстрацию такого спирального роста представляет собой фотография монокри­сталла парафина (фиг. 30.16).

Фиг. 30.16. Кристалл парафина, выросший вокруг винтовой дислокации.

§ 9. Модель кристалла по Брэггу и Наю

Мы, разумеется, не можем увидеть, что происходит с отдель­ными атомами в кристалле. Как вы теперь понимаете, существует еще множество сложных явлений, которые трудно описать ко­личественно. Лоуренс Брэгг и Дж. Най придумали модель ме­таллического кристалла, которая удивительным образом моде­лирует множество явлений, возникающих, по-видимому, в реаль­ном металле. Лучше всего прочесть эту работу самим; в ней описан и сам метод, и полученные с его помощью результаты [статья была напечатана в Proceedings of the Royal Society of London, 190, 474 (1947)] .

* В сокращенном виде она помещена в конце этого выпуска, — Прим. ред.

* Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется перевод: Ч.Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.)

Глава 31

ТЕНЗОРЫ

§1. Тензор поляризуемости

§2. Преобразование компонент тензора

§3. Эллипсоид энергии

§4. Другие тензоры; тензор инерции

§5. Векторное произведение

§6. Тензор напряжений

§7. Тензоры высших рангов

§8. Четырехмерный тензор электро­магнитного импульса

Повторить: гл. 11 (вып. 1)

«Векторы»; гл. 20 (вып. 2)

«Вращение в пространстве»

§ 1. Тензор поляризуемости

У физиков есть привычка брать простейший пример какого-то явления и называть его «фи­зикой», а примеры посложнее отдавать на рас­терзание других наук, скажем прикладной ма­тематики, электротехники, химии или кристал­лографии. Даже физика твердого тела для них только «полуфизика», ибо ее волнует слишком много специальных вопросов. По этой-то при­чине мы в наших лекциях откажемся от множе­ства интересных вещей. Например, одно из важнейших свойств кристаллов и вообще боль­шинства веществ — это то, что их электрическая поляризуемость различна в разных направле­ниях. Если вы в каком-либо направлении приложите электрическое поле, то атомные заряды слегка сдвинутся и возникнет дипольный момент; величина же этого момента зави­сит очень сильно от направления приложенного поля. А это, конечно, усложнение. Чтобы об­легчить себе жизнь, физики начинают разговор со специального случая, когда поляризуемость во всех направлениях одинакова. А другие случаи мы предоставляем другим наукам. По­этому для наших дальнейших рассмотрении нам совсем не понадобится то, о чем мы соби­раемся говорить в этой главе.

Математика тензоров особенно полезна для описания свойств веществ, которые изменяются с направлением, хотя это лишь один из приме­ров ее использования. Поскольку большин­ство из вас не собираются стать физиками, а намерены заниматься реальным миром, где зависимость от направления весьма сильная, то рано или поздно, но вам понадобится исполь­зовать тензор. Вот, чтобы у вас не было здесь пробела, я и собираюсь рассказать вам про тензоры, хотя и не очень подробно. Я хочу, чтобы ваше понимание физики было как можно более полным. Электродинамика, например, у нас вполне законченный курс; она столь же полна, как и любой курс электричества и магнетизма, даже институтский. А вот механика у нас не закончена, ибо, когда мы ее изучали, вы еще не были столь тверды в математике и мы не могли обсуждать такие разделы, как принцип наименьшего действия, лагран­жианы, гамильтонианы и т. п., которые представляют наиболее элегантный способ описания механики. Однако полный свод законов механики, за исключением теории относительности, у нас все же есть. В той же степени, как электричество и магне­тизм, у нас закончены многие разделы. Но вот квантовую ме­ханику мы так и не закончим; впрочем, нужно что-то оставить и на будущее! И все же, что такое тензор, вам все-таки следует знать уже сейчас.