Выбрать главу

* Кстати, точно такое же уравнение возникает и в других физических ситуациях: например, в мениске на поверхности жидкости, заключенной между двумя параллельными стенками, а поэтому можно воспользоваться тем же самым геометрическим рассмотрением.

* Решение его можно выразить также через особые функции, называе­мые «эллиптическими функциями Якоби», которые когда-то раз навсегда были вычислены и протабулированы.

* Это и есть момент инерции пластинки единичной плотности и с единичной площадью сечения

Глава 39

УПРУГИЕ МАТЕРИАЛЫ

§ 1. Тензор деформации

§ 2. Тензор упругости

§ З. Движения в упругом теле

§ 4. Неупругое поведение

§ 5. Вычисление упругих постоянных

§ 1. Тензор деформации

В предыдущей главе мы говорили о возму­щениях упругих тел в простых случаях. В этой главе мы посмотрим, что может происходить внутри упругого материала в общем случае. Как описать условия напряжения и деформа­ции в большом куске желе, скрученном и сжа­том каким-то очень сложным образом? Для этого необходимо описать локальную деформацию в каждой точке упругого тела, а это можно сде­лать, задав в ней набор шести чисел — компо­нент симметричного тензора. Ранее (в гл. 31) мы говорили о тензоре напряжений, теперь же нам потребуется тензор деформации.

Предположим, что мы взяли недеформиро­ванный материал и, прикладывая напряжение, наблюдаем за движением маленького пятныш­ка примеси, попавшей внутрь. Пятнышко, которое вначале находилось в точке Р и имело положение г=(x, у, z), передвигается в новую точку Р', т. е. в положение r'=(х', у', z'), как это показано на фиг. 39.1.

Фиг. 39.1. Пятнышко примеси в материале из точки Р недеформированного кубика после деформации пере­мещается в точку Р'.

Мы будем обозначать через и вектор перемещения из точки Р в точ­ку Р', т. е.

u = r'-r. (39.1)

Перемещение и зависит, конечно, от точки Р, из которой оно выходит так, что и есть векторная функция от г или от (х, у, z).

Сначала рассмотрим простейший случай, ког­да деформация по всему материалу постоянна, т. е. то, что называется однородной деформацией. Предположим, например, что мы взяли балку из како­го-то материала и равномерно ее растянули. Иначе говоря, мы просто равномерно изменили ее размер в одном направле­нии, скажем в направлении оси х (фиг. 39.2).

Фиг. 39.2. Однородная деформация растяжения.

Перемещение uxпятнышка с координатой х пропорционально самому х.

Действительно,

Мы будем записывать uxследующим образом:

и x хх х.

Разумеется, константа пропорциональности еххэто то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)

Если же деформация неоднородна, то связь между х и uxв материале будет изменяться от точки к точке. В таком общем случае мы определим еххкак своего рода локальную величину Dl/l, т. е.

Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами

Кроме того, нам нужно описать деформации типа сдви­гов. Вообразите, что в перво­начально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).

Фиг. 39.3. Однородная деформация сдвига.

При такой дефор­мации перемещение в направлении х каждой частицы пропорционально ее координате у:

а перемещение в направлении у пропорционально х:

uy=(q/2)x. (39.5)

Таким образом, деформацию сдвигового типа можно описать с помощью

ux=exyy uу=eyxx,

где

Теперь вы сочтете, что при неоднородной деформации обоб­щенную деформацию сдвига можно описать, определив вели­чины еxyи еyxследующим образом:

Однако здесь есть некая трудность. Предположим, что пере­мещения uхи uyимеют вид

Они напоминают уравнения (39.4) и (39.5), за исключением того, что при uyстоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).

Фиг. 39.4. Однородный поворот. Никаких деформаций нет.

Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное поло­жение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше опре­деление деформации сдвига. Указанием может послужить то, что если дuy/дх и дux/ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив

Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, ехууx.

В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:

Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, ехувсегда равно еух), то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тен­зоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — век­торы, то СijiВjтензор.) А каждое наше eijесть про­изведение (или сумма таких произведений) компонент вектора

u=(uх, uу, uz) и оператора С=(д/дx,д/дy,д/дz), который, как

мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x1, x2и x3, а вместо uх, uyи uгписать u1, u2 и u3; тогда общий вид элемента тензора eijбудет выглядеть так: