Выбрать главу

В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного мо­мента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности при­кладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет α. Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.

Предположим, мы обнаружили, что для некоторого выбран­ного кристалла электрическое поле Е1; направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одина­ковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже нап­равленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это пока­зано на фиг. 31.1, а.

Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.

Поляризация уже не параллельна направ­лению электрического поля. Нетрудно понять, отчего так про­исходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заря­ды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы. Разумеется, угол 45° ничем не выде­лен. То, что индуцированная поляри­зация не направлена по электрическо­му полю, справедливо и в общем случае. Перед этим нам просто «посчастливи­лось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызван­ная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,6. Но несмотря на все это ус­ложнение, величина поляризации Р для любого поля Е по-преж­нему пропорциональна его величине.

Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать

Рx =axxEx, Ру=aухЕх, Рz=azxЕx. (31.1)

Этим я хочу сказать лишь, что электрическое поле, направ­ленное по оси х, создает поляризацию не только в этом нап­равлении, оно приводит к трем компонентам поляризации Рх, Рyи Pz, каждая из которых пропорциональна Ех. Коэффициен­ты пропорциональности мы назвали aхх, aухи azx (первый зна­чок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).

Аналогично, для поля, направленного по оси у, мы можем написать

Рх=aхуЕy, Ру=aууЕу, Рz=aгуЕу, (31.2)

а для поля в z-направлении

Px=axzEz, Py=ayzEz Pz=azzEz. (31,3)

Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то состав­ляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде

Диэлектрические свойства кристалла, таким образом, пол­ностью описываются девятью величинами (axx,, axy,,axz,ayz , ...), которые можно записать в виде символа aij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электри­ческое поле Е можно разложить на составляющие Еx, Еyи Еz. Зная их, можно воспользоваться коэффициентами aijи найти Рх, Рy и Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aijназывается тензором — в данном примере тензором поляризуемости. Точно так же как три величины х, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (aхх, aху, ...)«образуют тензор aij».

§ 2. Преобразование компонент тензора

Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Ег'тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты aijоказываются различными. Однако вполне можно выяснить, как должны изме­няться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в но­вой системе координат, мы должны получить ту же самую по­ляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy' , и Рz':