Выбрать главу

Заметьте, что с точностью до первого порядка y-перемещение атома 2 не изменяет длины пружинки между атомами 1 и 2. Однако, чтобы получить энергию деформации диагональной пружинки, той, что идет к атому 3, нам нужно вычислить изме­нение длины как из-за вертикального, так и из-за горизонталь­ного перемещений. Для малых отклонений от начала координат куба изменение расстояния до атома 3 можно записать в виде суммы компонент uх и uv в диагональном направлении:

Воспользовавшись величинами uх и uy. можно получить выра­жение для энергии

Для полной энергии всех пружинок в плоскости ху нам нужна сумма восьми членов типа (39.43) и (39.44). Обозначая эту энергию через U0, получаем

Чтобы найти полную энергию всех пружинок, связанных с атомом 1, мы должны сделать некую добавку к уравнению (39.45). Хотя нам нужны только х- и y-компоненты деформации, вклад в них дает еще некоторая добавочная энергия, связанная с диагональными соседями вне плоскости ху. Эта добавочная энергия равна

Упругие постоянные связаны с плотностью энергии w урав­нением (39.13). Энергия, которую мы вычислили, связана с од­ним атомом, точнее это удвоенная энергия, приходящаяся на один атом, ибо на каждый из двух атомов, соединенных пру­жинкой, должно приходиться по 1/2 ее энергии. Поскольку в единице объема находится 1/a3 атомов, то w и U0 связаны соотношением

w=U0/2a3.

3

Чтобы найти упругие постоянные Cijkl, нужно только воз­вести в квадрат суммы в скобках в уравнении (39.45), приба­вить (39.46) и сравнить коэффициенты при еijеkl с соответствую­щими коэффициентами в уравнении (39.13). Например, собирая слагаемые с е2xx и е2yy , мы находим, что множитель при нем равен

поэтому

В остальных слагаемых нам встретится небольшое усложнение. Поскольку мы не можем отличить произведения еххеyy от еyyехх, то коэффициент при нем в выражении для энергии равен сумме двух членов в уравнении (39.13). Коэффициент при еххеyy в урав­нении (39.45) равен 2k2, так что получаем

Однако из-за симметрии выражения для энергии при пере­становке двух первых значений с двумя последними можно считать, что Скхуу=Суухх, поэтому

Таким же способом можно получить

Заметьте, наконец, что любой член, содержащий один раз значок х или у, равен нулю, как это было найдено ранее из соображений симметрии. Подытожим наши результаты:

Итак, оказалось, что мы способны связать макроскопиче­ские упругие постоянные с атомными свойствами, которые проявляются в постоянных k1 и k2. В нашем частном случае Cхуxу=Cххуу.Эти члены для кубического кристалла, как вы, вероятно, заметили из хода вычислений, оказываются всегда равными, какие бы силы мы ни принимали во внимание, но только при условии, что силы действуют вдоль линии, соеди­няющей каждую пару атомов, т. е. до тех пор, пока силы между атомами подобны пружинкам и не имеют боковой составляющей (которая несомненно существует при ковалентной связи).

Наши вычисления можно сравнить с экспериментальными измерениями упругих постоянных. В табл. 39.2 приведены наблюдаемые величины трех упругих коэффициентов для не­которых кубических кристаллов. Вы, вероятно, обратили внимание на то, что Сxxyy , вообще говоря, не равно Сxyxy . При­чина заключается в том, что в металлах, подобных натрию и калию, межатомные силы не направлены по линии, соединяю­щей атомы, как предполагалось в нашей модели. Алмаз тоже не подчиняется этому закону, ибо силы в алмазе — это ковалентные силы, которые обладают особым свойством направ­ленности: «пружинки» предпочитают связывать атомы, распо­ложенные в вершинах тетраэдра. Такие ионные кристаллы, как фтористый литий или хлористый натрий и т. д., обладают почти всеми физическими свойствами, предположенными в на­шей модели; согласно данным табл. 39.2, постоянные Сxxyy и Сxyxy у них почти равны.