Выбрать главу

Если мы отбросим fвязк, то в уравнении (40.4) все нам из­вестно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — ско­рость частицы в некотором месте жидкости, то ускорение ее будет просто равно дv//дt. Но это совсем неверно, и по довольно хитрой причине. Производная дv/дt выражает изменение ско­рости v (х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидко­сти. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени At эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Dt она из точки Р1 переме­стится в точку Р2.

Фиг. 40.4. Ускорение частицы жидкости.

Фактически в направлении оси х она пере­двинется на расстояние vxDt, в направлении оси у — на рас­стояние vуDt, а в направлении оси z на расстояние vzDt. Мы видим, что если v (х, у, z, t) скорость частицы в момент t, то скорость той же самой частицы в момент t+Dt представ­ляет величину v +Dx, у+Dy, z+Dz, t+Dt), причем

Dx=vxDt, Dy=vyDt и Dz=vzDt.

Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем

Ускорение же Dv/Dt будет равно

Считая С вектором, это можно записать символически:

Обратите внимание, что, даже когда дv/дt=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоян­ной скоростью по кругу: она ускоряется даже тогда, когда ско­рость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.

Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного под­становкой ускорения (40.5) в (40.4), т. е.

где слагаемое с вязкостью уже выброшено. Воспользовав­шись известным тождеством из векторного анализа, это уравнение можно переписать по-другому: