Если мы отбросим fвязк, то в уравнении (40.4) все нам известно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — скорость частицы в некотором месте жидкости, то ускорение ее будет просто равно дv//дt. Но это совсем неверно, и по довольно хитрой причине. Производная дv/дt выражает изменение скорости v (х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидкости. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени At эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Dt она из точки Р1 переместится в точку Р2.
Фиг. 40.4. Ускорение частицы жидкости.
Фактически в направлении оси х она передвинется на расстояние vxDt, в направлении оси у — на расстояние vуDt, а в направлении оси z — на расстояние vzDt. Мы видим, что если v (х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент t+Dt представляет величину v (х+Dx, у+Dy, z+Dz, t+Dt), причем
Dx=vxDt, Dy=vyDt и Dz=vzDt.
Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем
Ускорение же Dv/Dt будет равно
Считая С вектором, это можно записать символически:
Обратите внимание, что, даже когда дv/дt=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоянной скоростью по кругу: она ускоряется даже тогда, когда скорость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.
Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного подстановкой ускорения (40.5) в (40.4), т. е.
где слагаемое с вязкостью уже выброшено. Воспользовавшись известным тождеством из векторного анализа, это уравнение можно переписать по-другому: