§ 2. Преобразование компонент тензора
Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Ег' тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты aij оказываются различными. Однако вполне можно выяснить, как должны изменяться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в новой системе координат, мы должны получить ту же самую поляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy' , и Рz':
Рx’=аРх+bРу+сРz,
и аналогично для других компонент. Если вместо Рх, Рy и Рz подставить их выражения через Е согласно (31.4), то получится
Теперь напишите, как выражается Ех, Еy и Ez через Еx' , Еy' и Еz' , например,
Ex = a'Ex'+b'Ey'+c'Ez' ,
где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх' через компоненты Ех', Еy' и Ez' , т. е. получились новые aij. Никаких хитростей здесь нет, хотя все это достаточно запутано.
Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то a не изменяются. И обратно, если по отношению к осям изменять ориентацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристалла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости aij. в любой произвольно выбранной системе координат. Точно так же как вектор скорости v = (vx, vy , vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменяться некоторым определенным образом, тензор поляризуемости aij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, можно связать с кристаллом.