Выбрать главу

Рассмотрим теперь неко­торые простые примеры, в которых интеграл Бернулли позволяет нам сразу описать поток. Предположим, что из отверстия вблизи дна резервуара вы­текает вода (фиг. 40.7).

Фиг. 40.7. Вытекание жидкости из резервуара.

Рассмотрим случай, когда скорость пото­ка vвых в отверстии гораздо больше скорости потока вблизи по­верхности воды в резервуаре; другими словами, предположим, что диаметр резервуара настолько велик, что падением уровня жидкости можно пренебречь. (Мы могли бы при желании про­делать и более аккуратные вычисления.) Давление на по­верхность воды в резервуаре равно р0 (атмосферному давлению), т. е. такое же, как и давление на бока струи. Напишем теперь уравнение Бернулли для линии тока наподобие той, что пока­зана на фиг. 40.7. В верхней части резервуара скорость v мы примем равной нулю; гравитационный потенциал j здесь вы­берем тоже равным нулю. В отверстии же скорость равна vвых а j =-gh, так что

или

Скорость получилась в точности равной скорости предмета, падающего с высоты h. В этом нет ничего удивительного —ведь в конечном счете вода на выходе получает свою кинетическую энергию из запаса потенциальной энергии воды, находящейся наверху резервуара. Однако не воображайте, что вы можете определить скорость убывания жидкости из резервуара, умно­жив эту скорость vвых на площадь отверстия. Скорости частиц жидкости в тот момент, когда струя вырывается из отверстия, не параллельны друг другу, а имеют компоненту, направлен­ную к центру потока; струя сужается. Пройдя небольшое рас­стояние, струя перестает сжиматься, и скорости становятся параллельными. Таким образом, полный поток равен скорости, умноженной на площадь именно в том месте, где сжатие струи прекратилось. На самом деле, если у нас есть выходное отверстие просто в виде круглой дыры с острым краем, то се­чение струи сокращается до 62% от площади отверстия. Уменьшение эффективной площади выходного отверстия для различных форм выходных труб разное, а его экспериментальное значение можно найти в таб­лице коэффициентов истечения.

Если выходная труба вдается в резервуар, как показано на фиг. 40.8, то можно весьма красиво доказать, что коэффи­циент истечения в точности равен 50%. Я лишь намекну вам, как проводится это доказательство.

Фиг. 40.8. Если выходная труба вставлена внутрь жидкости, то сокращение струи составляет по­ловину площади отверстия.

Чтобы получить скорость, мы использовали закон сохране­ния энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходя­щей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое дав­ление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно урав­новешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отвер­стия, наподобие показанного на фиг. 40.7, ибо увеличение ско­рости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить.

Рассмотрим теперь другой пример — горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода.

Фиг. 40.9. Там, где скорость повышается, давление пони­жается.

Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко про­демонстрировать этот эффект, измеряя давление в разных местах с различным сече­нием с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действи­тельно оказывается меньше, чем в широких. Если после суже­ния площадь сечения возвращается к своей прежней величине — той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вы­зывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость v2 должна превышать скорость v1 чтобы через сужение могло пройти то же количе­ство воды. Поэтому вода должна ускоряться, переходя из широкой части в узкую. Силы, которые приводят к этому ус­корению, и есть перепад дав­ления.