Выбрать главу

Фиг. 40.12. Вода с циркуляцией вытекает из резервуара.

(Подобное явление вы наверняка много раз видели в ванне!) Хотя вначале вы и создали некоторую угловую скорость w, она из-за вязкости вскоре затухает и поток становится безвихревым. Однако ка­кая-то циркуляция вокруг трубки все же остается.

Из теории можно вычислить форму по­верхности воды в цилиндре. По мере того как частицы движутся внутрь, они набирают скорость. Согласно уравнению (40.20), тан­генциальная скорость увеличивается как 1/rпросто благодаря закону сохранения момента количества движения, как у фигуриста, при­жавшего руки к телу. Радиальная скорость тоже возрастает как 1/r. Если пренебречь тангенциальным движением, то полу­чится, что вода идет внутрь по радиусу к отверстию, а из урав­нения С·v=0 следует, что радиальная скорость пропорцио­нальна 1/r. Таким образом, полная скорость тоже возрастает как 1/г и вода идет по спирали Архимеда. Поверхность вода — воздух целиком находится под атмосферным давлением, так что, согласно уравнению (40.14), она должна обладать свойством

gz+1/2mv2=const.

Ио здесь v пропорционально 1/r, поэтому форма поверхности будет такой:

Обратите внимание на одну интересную особенность, кото­рая наблюдается в случае несжимаемого безвихревого потока (в общем случае ее нет): если у нас есть какое-то одно решение и какое-то второе решение, то сумма их тоже будет решением. Это справедливо потому, что уравнения (40.19) — линейные. Полный же набор гидродинамических уравнений, т. е. урав­нений (40.8) — (40.10), не линеен, а это уже совсем другое дело. Однако для безвихревого потока вокруг цилиндра мы можем сложить один поток (фиг. 40.11,а) и другой поток (фиг. 40.11,б) и получить новый вид потока (фиг. 40.11,в). Этот новый поток особенно интересен. Скорость потока на верхней стороне цилиндра оказывается больше, чем на нижней, так что когда на циркуляцию вокруг цилиндра налагается чистый горизонтальный поток, то возникнет действующая на цилиндр вертикальная сила; она называется подъемной силой. Разумеется, если циркуляция отсутствует, то в соответствии с нашей теорией «сухой» воды для любого тела суммарная сила обращается в нуль.

§ 5. Вихревые линии

Мы уже выписывали общие уравнения потока несжимаемой жидкости при наличии завихренности:

Физическое содержание этих уравнений было на словах описано Гельмгольцем в трех теоремах. Прежде всего пред­ставьте себе, что мы вместо линий потока нарисовали вих­ревые линии. Под вихревыми линиями мы подразумеваем линии поля, которые имеют направление вектора W, а плотность их в любой области пропорциональна величине W. Из уравнения (II) дивергенция W всегда равна нулю [вспомните гл.3,§ 7 (вып. 5): дивергенция ротора всегда нуль]. Таким образом, вихревые линии подобны линиям поля В: они нигде не кончаются и нигде не начинаются и всегда стремятся замкнуться. Формулу (III) Гельмгольц описал словами: вихревые линии движутся вместе с жидкостью. Это означает, что если бы вы пометили частички жидкости, расположенные на некоторой вихревой линии, на­пример окрасив их чернилами, то в процессе движения жидко­сти и переноса этих частичек они всегда отмечали бы новое положение вихревой линии. Каким бы образом ни двигались атомы жидкости, вихревые линии движутся вместе с ними. Это один из способов описания законов. Он также содержит и метод решения любых задач. Задавшись первоначальным видом потока, скажем задав всюду v, вы можете вычислить W. Зная v, можно также сказать, где будут вихревые линии немного позднее: они движутся со скоростью v. А с новым значением W можно воспользоваться уравнениями (I) и (II) и найти новую величину v. (Точно как в задаче о нахождении поля В по дан­ным токам.) Если нам задан вид потока в какой-то один момент, то в принципе мы можем вычислить его во все после­дующие моменты. Мы получаем общее решение невязкого потока.

Мне бы хотелось показать вам, как (по крайней мере ча­стично) можно понять утверждение Гельмгольца, а следовательно, формулу (III). Фактически это просто за­кон сохранения момента импульса, примененный к жидкости. Представьте себе маленький жидкий цилиндр, ось которого параллельна вихревым ли­ниям (фиг. 40.13,а).