Выбрать главу

Обычно зависимость коэффициентов вязкости от координат положения несущественна и ею можно пренебречь. Тогда вяз­кая сила на единицу объема содержит только вторые производ­ные скорости. Мы видели в гл. 39, что наиболее общей формой вторых производных в векторном уравнении будет сумма Лапласиана (С·С)v = С2v и градиента дивергенции (С (С·v)). Выражение (41.14) представляет как раз такую сумму с коэф­фициентами h и (h+h'). Мы получаем

В случае несжимаемой жидкости С·v=0 и вязкая сила в еди­нице объема будет просто равна hС2v. Это и все, чем обычно пользуются; однако если вам понадобится вычислить погло­щение звука в жидкости, то вам потребуется и второй член. Теперь мы можем закончить вывод уравнения движения реальной жидкости. Подставляя (41.15) в уравнение (41.1), получаем

Уравнение получилось, конечно, сложное, но ничего не поде­лаешь, такова природа.

Если мы введем W=СXv, как делали это раньше, то наше уравнение можно записать в виде

Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то полу­чим

Это напоминает (40.9) с той только разницей, что в правой части имеется еще одно слагаемое. Когда правая часть была равна нулю, то имелась теорема Гельмгольца о том, что вихри всегда движутся вместе с жидкостью. Теперь же в правой части появилось довольно сложное выражение, из которого, однако, не сразу же следуют физические выводы. Если бы мы пренебрегли членом СX(WXv), то получили бы диффузион­ное уравнение. Новый член означает, что вихри диффундируют в жидкости. При большом градиенте вихри расползаются в со­седние области жидкости.

Именно поэтому утолщаются кольца табачного дыма. С этим же связано красивое явление, возникающее при прохождении кольца «чистого» вихря (т. е. «бездымного» кольца, созданного с помощью описанной в предыдущей главе аппаратуры) через облако дыма. Когда оно выходит из облака, к нему «прилипает» некое количество дыма и мы видим полую оболочку из дыма. Какое-то количество завихренности W диффундирует в окру­жающий дым, продолжая свое движение вперед вместе с вихрем.

§ 3. Число Рейнольдса

Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых спе­циальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла урав­нению (41.17).

Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром D. Поток должен опреде­ляться уравнением (41.17) и

W=СXv (41.18)

с условием, что скорость на больших расстояниях равна не­которой постоянной V (параллельной оси х), а на поверхности цилиндра равна нулю. Так что

vя=vу=vz=0 (41.19)

при

x2+y2=D2/4.

Это полностью определяет математическую задачу.

Если вы вглядитесь в эти выражения, то увидите, что в зада­че есть четыре различных параметра: h, r, D и V. Можно подумать, что нам придется иметь дело с целой серией решений для разных V, разных D и т. д. Вовсе нет. Все возможные раз­личные решения соответствуют разным значениям одного пара­метра. Такова наиболее важная общая вещь, которую мы мо­жем сказать о вязком потоке. А чтобы понять, почему это так, заметьте сначала, что вязкость и плотность появляются в виде отношения h/r, т. е. удельной вязкости. Это уменьшает число независимых параметров до трех. Предположим теперь, что все расстояния мы измеряем в единицах той единственной длины, которая появляется в задаче: диаметра цилиндра D, т. е. вместо х, у, z мы вводим новые переменные х', у', z', причем

x=x'D, y=y'D, z=z'D.

При этом параметр D из (41.19) исчезает. Точно так же если будем измерять все скорости в единицах V, т. е. если мы поло­жим v=v'V, то избавимся от V, а v' на больших расстояниях будет просто равно единице. Поскольку мы фиксировали наши единицы длины и скорости, то единицей времени теперь должно быть D/V, так что мы должны сделать подстановку;