t=t'D/V. (41.20)
В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, д/дх перейдет в (1/D)(д/дх') и т. д., так что уравнение (41.18) превратится в
А наше основное уравнение (41.17) перейдет в
Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через
Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид
и
с условиями ,
v=0 , для
х2+у2 =1/4 (41.24)
и
vx=1, vy=vz=0
для
x2+y2+z2>>1.
Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V1 и некоторого цилиндра диаметром D1 а затем интересуемся обтеканием цилиндра другого диаметра D2 другой жидкостью, то ноток будет одним и тем же при такой скорости V2, которая отвечает тому же самому числу Рейнольдса, т. е. когда
В любых случаях, когда числа Рейнольдса одинаковы, поток при выборе надлежащего масштаба х', у', z' и t' будет «выглядеть» одинаково. Это очень важное утверждение, ибо оно означает, что мы можем определить поведение потока воздуха при обтекании крыла самолета, не строя самого самолета и не испытывая его. Вместо этого мы можем сделать модель и провести измерения, используя скорость, которая дает то же самое число Рейнольдса. Именно этот принцип позволяет нам применять результаты измерений над маленькой моделью самолета в аэродинамической трубе или результаты, полученные с моделью корабля, к настоящим объектам. Напомню, однако, что это можно делать только при условии, что сжимаемостью жидкости можно пренебречь. В противном случае войдет новая величина — скорость звука. При этом различные модели будут действительно соответствовать друг другу только тогда, когда отношение V к скорости звука тоже приблизительно одинаково. Отношение скорости V к скорости звука называется числом Маха. Таким образом, для скоростей, близких к скорости звука или больших, поток в двух задачах будет выглядеть одинаково, если и число Маха и число Рейнольдса в обеих ситуациях одинаковы.
§ 4. Обтекание кругового цилиндра
Вернемся теперь обратно к задаче об обтекании цилиндра медленным (почти несжимаемым) потоком. Я дам вам качественное описание потока реальной жидкости. О таком потоке нам необходимо знать множество вещей. Например, какая увлекающая сила действует на цилиндр? Сила, увлекающая цилиндр, показана на фиг. 41.4 как функция величины
Фиг. 41.4. Коэффициент увлечения Сd кругового цилиндра как функция числа Рейнольдса.
Фактически на рисунке отложен коэффициент увлечения Сd — безразмерное число, равное отношению силы к 1/2rV2Dl (d — диаметр, l —длина цилиндра, а r —плотность жидкости):
Коэффициент увлечения изменяется довольно сложным образом, как бы намекая нам на то, что в потоке происходит нечто интересное и сложное. Свойства потока полезно описывать для различных областей изменения числа Рейнольдса. Прежде всего, когда число Рейнольдса очень мало, поток вполне стационарен, скорость в любой точке потока постоянна и он плавно обтекает цилиндр. Однако распределение линий потока не похоже на их распределение в потенциальном потоке. Они описывают решение несколько другого уравнения. Когда скорость очень мала или, что эквивалентно, вязкость очень велика, так что вещество по своей консистенции напоминает мед, можно отбросить инерционные члены и описать поток уравнением