Выбрать главу

t=t'D/V. (41.20)

В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, д/дх перейдет в (1/D)(д/дх') и т. д., так что уравнение (41.18) превратится в

А наше основное уравнение (41.17) перейдет в

Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через:

Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид

и

с условиями ,

v=0 , для

х22 =1/4 (41.24)

и

vx=1, vy=vz=0

для

x2+y2+z2>>1.

Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V1 и некоторого цилиндра диа­метром D1 а затем интересуемся обтеканием цилиндра другого диаметра D2 другой жидкостью, то ноток будет одним и тем же при такой скорости V2, которая отвечает тому же самому числу Рейнольдса, т. е. когда

В любых случаях, когда числа Рейнольдса одинаковы, по­ток при выборе надлежащего масштаба х', у', z' и t' будет «выглядеть» одинаково. Это очень важное утверждение, ибо оно означает, что мы можем определить поведение потока воз­духа при обтекании крыла самолета, не строя самого самолета и не испытывая его. Вместо этого мы можем сделать модель и провести измерения, используя скорость, которая дает то же самое число Рейнольдса. Именно этот принцип позволяет нам применять результаты измерений над маленькой моделью самолета в аэродинамической трубе или результаты, получен­ные с моделью корабля, к настоящим объектам. Напомню, однако, что это можно делать только при условии, что сжимае­мостью жидкости можно пренебречь. В противном случае войдет новая величина — скорость звука. При этом различ­ные модели будут действительно соответствовать друг другу только тогда, когда отношение V к скорости звука тоже приблизительно одинаково. Отношение скорости V к скорости звука называется числом Маха. Таким образом, для скоростей, близких к скорости звука или больших, поток в двух задачах будет выглядеть одинаково, если и число Маха и число Рейнольдса в обеих ситуациях одинаковы.

§ 4. Обтекание кругового цилиндра

Вернемся теперь обратно к задаче об обтекании цилиндра медленным (почти несжимаемым) потоком. Я дам вам качест­венное описание потока реальной жидкости. О таком потоке нам необходимо знать множество вещей. Например, какая увлекающая сила действует на цилиндр? Сила, увлекающая цилиндр, показана на фиг. 41.4 как функция величины , ко­торая пропорциональна скорости V, если все остальное фиксировано.

Фиг. 41.4. Коэффициент увлечения Сd кругового цилиндра как функция числа Рейнольдса.

Фактически на рисунке отложен коэффициент увлече­ния Сdбезразмерное число, равное отношению силы к 1/2rV2Dl (d диаметр, l —длина цилиндра, а r —плотность жидкости):

Коэффициент увлечения изменяется довольно сложным обра­зом, как бы намекая нам на то, что в потоке происходит нечто интересное и сложное. Свойства потока полезно описывать для различных областей изменения числа Рейнольдса. Прежде всего, когда число Рейнольдса очень мало, поток вполне ста­ционарен, скорость в любой точке потока постоянна и он плавно обтекает цилиндр. Однако распределение линий потока не похоже на их распределение в потенциальном потоке. Они описывают решение несколь­ко другого уравнения. Когда скорость очень мала или, что эквивалентно, вязкость очень ве­лика, так что вещество по своей консистенции напоминает мед, можно отбросить инерционные члены и описать поток уравнением