Фиг. 31.6. Сила DF1, действующая на элементе площади DyDz, перпендикулярной оси х, разлагается на три компоненты: DFx1, DFу1 и DFz1.
Отношение этих сил к площади Dy/Dz мы назовем Sxx, Syx и Szx. Например,
Syx=DFу1/DyDz
Первый индекс у относится к направлению компоненты силы, а второй х — к направлению нормали к плоскости. Если угодно, площадь DyDz можно записать как Dах, имея в виду элемент площади, перпендикулярный оси х, т. е.
Syx=DFу1/Dах
А теперь представьте себе разрез, перпендикулярный оси у. Пусть на маленькую площадку DxDz действует сила DF2.
Разлагая снова эту силу на три компоненты, как показано на фиг. 31.7, мы определяем три компоненты напряжения Sxy, Syy, Szy как силы, действующие на единичную площадь в этих трех направлениях.
Фиг. 31.7. Сила, действующая на элемент площади, перпендикулярной оси у, разлагается на три взаимно перпендикулярные компоненты.
Наконец, проведем воображаемый разрез, перпендикулярный оси z, и определим три компоненты Sxz, Syz и Szz. Таким образом, получается девять чисел:
Я хочу теперь показать, что этих девяти величин достаточно, чтобы полностью описать внутреннее напряженное состояние, и что Sij-—действительно тензор. Предположим, что мы хотим знать силу, действующую на поверхность, наклоненную под некоторым произвольным углом. Можно ли найти ее, исходя из Sij? Можно, и это делается следующим образом. Вообразите маленькую призму, одна грань N которой наклонна, а другие — параллельны осям координат. Если окажется, что грань N параллельна оси z, то получается картина, изображенная на фиг. 31.8.
Фиг. 31.8. Разложение на компоненты силы Fn, действующей на грани N (с единичной нормалью n).
(Это, конечно, частный случай, но он достаточно хорошо иллюстрирует общий метод.) Дальше, напряжения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере в пределе бесконечно малого размера), так что действующая на нее полная сила должна быть равна нулю. Силы, действующие на грани, параллельные осям координат, известны нам непосредственно из тензора Sij. А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выразить через Sij.
Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметьте, однако, что такие объемные силы будут пропорциональны объему призмочки и поэтому пропорциональны Dx,Dy, Dz, тогда как поверхностные силы пропорциональны DxDy, DyDz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.
А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за х-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Dz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная
DFx2=SxyDхDz,
а x-компонента силы, действующей на вертикальную прямоугольную грань, равна
DFx1=SхxDz.