Выбрать главу

§ 2. Уравнения Максвелла в диэлектрике

Наличие в веществе поляризации означает, что там возни­кают поляризационные заряды и токи, которые необходимо учитывать в полных уравнениях Максвелла при нахождении полей. Сейчас мы собираемся решать уравнения Максвелла для случая, когда заряды и токи не равны нулю, но неявно опреде­ляются вектором поляризации. Нашим первым шагом должно быть явное нахождение плотности зарядов r и плотности тока j, усредненных по тому же самому малому объему, который имел­ся в виду при определении вектора Р. Потом необходимые нам значения r и j могут быть определены из поляризации. В гл. 10 (вып. 5) мы видели, что когда поляризация Р меняется от точки к точке, то возникает плотность зарядов:

rпол=-С·Р. (32.9)

В то время мы имели дело со статическими полями, но эта же формула справедлива и для переменных полей. Но когда Р изменяется со временем, заряды движутся, так что появляется поляризационный ток. Каждый из осциллирующих зарядов вносит в ток свой вклад, равный произведению его заряда qe на скорость v. Когда же таких зарядов в единице объема N штук, то они создают плотность тока j:

j=Nqev.

Ну а поскольку известно, что v=dx/dt, то j=Nqedx/dt, что как раз

равно dP/dt. Следовательно, при переменной поляризации воз­никает плотность тока

jпол=dP/dt (32.10)

Наша задача стала теперь простой и понятной. Мы пишем уравнения Максвелла с плотностями заряда и тока, определяе­мыми поляризацией Р посредством уравнений (32.9) и (32.10). (Предполагается, что других зарядов и токов в веществе нет.) Затем мы свяжем Р с Е формулой (32.5) и будем разрешать их относительно Е и В, отыскивая при этом волновое решение.

Но прежде чем приступить к решению, мне бы хотелось сде­лать одно замечание исторического характера. Первоначально Максвелл писал свои уравнения в форме, отличающейся от той, в которой они используются нами. И именно потому, что урав­нения писались в другой форме в течение многих лет (да и сей­час многими пишутся так), я постараюсь объяснить вам разни­цу. В те дни механизм диэлектрической проницаемости не был понятен с ясностью и полнотой. Не была ясна ни природа ато­мов, ни существование поляризации в веществе. Поэтому тогда не понимали, что С·P дает дополнительный вклад в плотность заряда р. Были известны только заряды, не связанные в атомах (такие, как заряды, текущие по проводу или возникающие при трении).

Сегодня же мы предпочитаем обозначать через r полную плотность зарядов, включая в нее и заряды, связанные с инди­видуальными атомами. Если назвать эту часть зарядов rпол, то можно написать

r=rпол+rдр,

где rдр— плотность зарядов, учтенная Максвеллом и относя­щаяся к другим зарядам, не связанным с определенными атомами. При этом мы бы написали

После подстановки rпол из (32.9) получаем

или

В плотность тока, фигурирующую в уравнениях Макс­велла для СXB, вообще говоря, тоже вносится вклад от связанных атомных электронных токов. Поэтому мы можем написать

j=jпол+jдр,

причем уравнение Максвелла приобретает вид

Используя уравнение (32.10), получаем

Теперь вы видите, что если бы мы определили новый вектор D

D=e0E+P, (32.14)

то два уравнения поля приняли бы вид

С·D=rдр (32.15)

и

Это и есть та форма уравнений, которую использовал Мак­свелл для диэлектриков. А вот и остальные два уравнения:

СXЕ=-дB/дt

и

С·B=0,

которые в точности совпадают с нашими.

Перед Максвеллом и другими учеными того времени вставала проблема магнетиков (за них мы вскоре примемся). Они ничего не знали о циркулирующих токах, ответственных за атомный магнетизм и поэтому, в плотности тока утеряли еще одну часть. Вместо уравнения (32.16) они на самом деле писали