где Н отличается от e0с2В, так как последнее учитывает эффекты атомных токов. (При этом j' представляет то, что осталось от токов.) Таким образом, у Максвелла было четыре полевых вектора: Е, D, В и Н, причем в D и Н скрывалось то, на что он не обратил внимания,— процессы, происходящие внутри вещества. Уравнения, написанные в таком виде, вы встретите во многих местах.
Чтобы решить их, необходимо как-то связать D и Н с другими полями, поэтому зачастую писали
D =eE
и
В=mH. (32.18)
Однако эти связи верны лишь приближенно для некоторых веществ, и то лишь когда поля не изменяются слишком быстро со временем. (Для синусоидально изменяющихся полей зачастую можно писать уравнения таким способом, считая при этом e и m комплексными функциями частоты, но для произвольных изменений поля со временем это неверно.) На какие только ухищрения не пускаются ученые, чтобы решить уравнения! А мне кажется, что правильнее всего оставить уравнения записанными через фундаментальные величины, как мы понимаем их теперь, т. е. как раз то, что мы и проделали.
§ 3. Волны в диэлектрике
Теперь нам предстоит выяснить, какого сорта электромагнитные волны могут существовать в диэлектрическом веществе, где других зарядов, кроме тех, что связаны в атомах,
нет. Таким образом, мы возьмем r=-С·Р и j=дP/дt . При этом уравнения Максвелла примут такой вид:
Мы можем решить эти уравнения, как делали это прежде. Начнем с применения к уравнению (32.19в) операции ротора:
СX(СXE)=-(д/дt)СXB.
Используя затем векторное тождество
СX(СXE) = С(С·E)-С2E и подставляя выражение для СXB из (32.19б), получаем
Используя уравнение (32.19а) для С·Е, находим
Таким образом, вместо волнового уравнения мы теперь получили, что даламбертиан Е равен двум членам, содержащим поляризацию Р.
Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как еi(wt-kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следующим образом:
Ex=E0ei(wt-kz). (32.21)
Вы знаете, что любая функция от (z-vt) представляет волну, бегущую со скоростью v. Показатель экспоненты в выражении (32.21) можно переписать в виде
-ik[z-(w/k)t],
так что выражение (32.21) представляет волну, фазовая скорость которой равна
vфаз=w/k.
В гл. 31 (вып. 3) показатель преломления n определялся нами из формулы
vфаз=c/n.
С учетом этой формулы (32.21) приобретает вид
Ex=E0eiw(t-nz/c).
Таким образом, показатель n можно определить, если мы найдем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением
n=kc/w. (32.22)
В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением координаты х, поэтому С·P=0 и мы сразу же избавляемся от первого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рх будет изменяться как еiwt и d2Px/dt2= -w2Px. Лапласиан же в уравнении (32.20) превращается просто в д2Ex/dz2=-k2Еx, так что в результате получаем