Теперь на минуту предположим, что раз Е изменяется синусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположению и обсудим его.) Таким образом, пишем
Px=e0NaEx.
При этом Ех выпадает из уравнения (32.23), и мы находим
k2=w2/c2(1+Na). (32.24)
Мы получили, что волна вида (32.21) с волновым числом k, задаваемым уравнением (32.24), будет удовлетворять уравнениям поля. Использование же выражения (32.22) для показателя n дает
n2 = l+Na. (32.25)
Сравним эту формулу с тем, что получилось у нас для показателя преломления газа (гл. 31, вып. 3). Там мы нашли уравнение (31.19), которое тогда имело вид
Формула (32.25) после подстановки w из (32.6) дает
Что здесь нового? Во-первых, появился новый член igw, возникший в результате учета поглощения энергии в осцилляторах. Во-вторых, слева вместо n теперь стоит n2 и, кроме того, отсутствует дополнительный множитель 1/2. Но заметьте, что если значение N достаточно мало, так что n близок к единице (как это имеет место в газе), то выражение (32.27) говорит, что n2 равен единице плюс некое малое число, т. е. n2=1+e. При этом условии мы можем написать, что n=Ц(1+e)»l+e/2, и оба выражения оказываются эквивалентными. Таким образом, наш новый метод дает для газа тот же самый, найденный нами ранее результат.
Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поляризованное поле, действующее на каждый из атомов,— это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Аналогичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом, представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/3e0. (Не забудьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае кубического кристалла.)
Те же рассуждения верны и для электрического поля в волне, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении
Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следующим образом:
Р =e0NaЕлок. (32.29)
Подставляя теперь Елок из формулы (32.28), находим
или
Иными словами, Р для плотного материала все еще пропорциональна Е (для синусоидального поля). Однако константа пропорциональности будет уже e0/Na/[1-(Na/3)], а не e0Nallfa, как раньше. Таким образом, нам нужно поправить формулу (32.25):
Более удобно переписать это в виде
который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.
В плотном материале возникает и другое усложнение. Поскольку атомы расположены слишком тесно, они сильно взаимодействуют друг с другом. Поэтому внутренние гармоники осцилляции изменяются. Собственные частоты атомных осцилляций размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень большим. Таким образом, все w0 и g твердого вещества будут другими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять а, по крайней мере приближенно, уравнением (32.7), так что