Выбрать главу

Перемещение и зависит, конечно, от точки Р, из которой оно выходит так, что и есть векторная функция от г или от (х, у, z).

Сначала рассмотрим простейший случай, ког­да деформация по всему материалу постоянна, т. е. то, что называется однородной деформацией. Предположим, например, что мы взяли балку из како­го-то материала и равномерно ее растянули. Иначе говоря, мы просто равномерно изменили ее размер в одном направле­нии, скажем в направлении оси х (фиг. 39.2).

Фиг. 39.2. Однородная деформация растяжения.

Перемещение ux пятнышка с координатой х пропорционально самому х.

Действительно,

Мы будем записывать ux следующим образом:

иxххх.

Разумеется, константа пропорциональности еххэто то же, что наше старое отношение Dl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)

Если же деформация неоднородна, то связь между х и ux в материале будет изменяться от точки к точке. В таком общем случае мы определим ехх как своего рода локальную величину Dl/l, т. е.

Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами

Кроме того, нам нужно описать деформации типа сдви­гов. Вообразите, что в перво­начально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3).

Фиг. 39.3. Однородная деформация сдвига.

При такой дефор­мации перемещение в направлении х каждой частицы пропорционально ее координате у:

а перемещение в направлении у пропорционально х:

uy=(q/2)x. (39.5)

Таким образом, деформацию сдвигового типа можно описать с помощью

ux=exyy uу=eyxx,

где

Теперь вы сочтете, что при неоднородной деформации обоб­щенную деформацию сдвига можно описать, определив вели­чины еxy и еyx следующим образом:

Однако здесь есть некая трудность. Предположим, что пере­мещения uх и uy имеют вид

Они напоминают уравнения (39.4) и (39.5), за исключением того, что при uy стоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол q/2 (фиг. 39.4).

Фиг. 39.4. Однородный поворот. Никаких деформаций нет.

Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное поло­жение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше опре­деление деформации сдвига. Указанием может послужить то, что если дuy/дх и дux/ду равны и противоположны, никакого напряжения нет; этого можно добиться, определив

Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, ехууx.

В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:

Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, еху всегда равно еух), то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тен­зоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — век­торы, то СijiВjтензор.) А каждое наше eij есть про­изведение (или сумма таких произведений) компонент вектора