Выбрать главу

u=(uх, uу, uz) и оператора С=(д/дx,д/дy,д/дz), который, как

мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x1, x2 и x3, а вместо uх, uy и uг писать u1, u2 и u3; тогда общий вид элемента тензора eij будет выглядеть так:

где индексы i и j могут принимать значения 1, 2 или 3.

Когда мы имеем дело с однородной деформацией, которая может включать как растяжения, так и сдвиги, то все eij постоянные, и мы можем написать

uхххх+ехуyхzг. (39.9)

(Начало координат выбрано в точке, где и равно нулю.) В этих случаях тензор деформации eij дает соотношение между двумя векторами — вектором координаты r=(x, y, z) и вектором перемещения u=(uх, uу, uг).

Если же деформация неоднородна, то любой кусочек желе может быть как-то искажен и, кроме того, могут возникнуть местные повороты. Когда все возмущения малы, мы получаем

где wij, — антисимметричный тензор

описывающий поворот. Нам незачем беспокоиться о поворотах; займемся только деформацией, которая описывается симмет­ричным тензором еij.

§ 2. Тензор упругости

Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны дефор­мациям. В гл. 31 мы определили тензор напряжений Sij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая ком­понента Sij линейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9X9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их Cijkl определив посредством уравнения

где каждый значок i, j, k и l может принимать значения 1, 2 или 3. Поскольку коэффициенты Сijkl связывают один тензор с другим, они тоже образуют тензор — на этот раз тензор четвертого ранга. Мы можем назвать его тензором упругости.

Предположим, что все Cijkl известны и что к телу какой-то произвольной формы мы приложили сложные силы. При этом возникнут все сорта деформаций — тело как-то исказится. Каковы будут перемещения? Вы понимаете, что это довольно сложная задача. Если вам известны деформации, то из уравне­ния (39.12) можно найти напряжения, и наоборот. Но напряже­ния и деформации, которые возникли в любой точке, зависят от того, что происходит во всей остальной части материала.

Наиболее простой способ подступиться к такой задаче — это подумать об энергии. Когда сила F пропорциональна пере­мещению х, скажем F=kx, то работа, затраченная на любое перемещение х, равна kx2/2. Подобным же образом энергия w, запасенная в любой единице объема деформированного мате­риала, оказывается равной