Выбрать главу

Необходимо быть осторожным, утверждая, что мы рас­сматриваем хорошие фильтры, которые действительно создают «чистые» пучки. Если, скажем, наш прибор Штерна — Герлаха недостаточно хорошо отделяет пучки друг от друга, то Мы не можем произвести полного разделения на базисные состояния. Мы можем проверить, есть ли у нас чистые базисные состояния, посмотрев, смогут ли пучки опять расщепиться еще одним таким же фильтром. Если, например, имеется чистое состояние (+T), то все атомы пройдут через

но ни один из них не пройдет ни через

ни через

Наше утверждение относительно базисных состояний означает, что есть возможность отфильтровать пучок до некоторого чис­того состояния, так что дальнейшее фильтрование идентичным прибором уже станет невозможным.

Следует еще отметить, что все, что мы говорим, до конца верно лишь в идеализированных случаях. В каждом реальном приборе Штерна — Герлаха надо подумать и о дифракции на щелях, которая может вынудить некоторые атомы перейти в состояния, отвечающие другим углам, и о том, нет ли в пучке атомов с другой степенью возбуждения своих внутренних со­стояний и т. д. Мы идеализировали наш случай и говорим только о тех состояниях, которые расщепляются в магнитном поле; при этом мы игнорируем все, что касается местоположения, импульса, внутренних возбуждений и т. п. Вообще же следовало бы рассматривать также базисные состояния, рассортированные и по отношению ко всем перечисленным характеристикам. Но для простоты мы пользуемся только нашей совокупностью трех состояний. Этого вполне достаточно для того, чтобы точно рассмотреть идеализированный случай, в котором атомы не подвергаются в приборе плохому обращению, не разрываются и, более того, покидая его, оказываются в состоянии покоя.

Заметьте, что мы всегда начинаем наши мысленные экспери­менты с того, что берем фильтр, у которого открыт только один канал, так что начинаем всегда с определенного базисного со­стояния. Мы делаем это потому, что атомы выходят из печи в различных состояниях, случайно определенных тем, что про­изойдет в печи. (Это дает так называемый «неполяризованный» пучок.) Эта случайность предполагает вероятности «классичес­кого» толка (как при бросании монеты), которые отличаются от интересующих нас сейчас квантовомеханических вероятностей. Работа с неполяризованным пучком привела бы нас к добавоч­ным усложнениям, а их лучше избегать, пока мы не поймем поведения поляризованных пучков. Так что пока не пытайтесь размышлять о том, что случится, если первый аппарат пропустит сквозь себя больше одного пучка. (В конце главы мы расскажем вам, как нужно поступать и в таких случаях.)

А теперь вернемся назад и посмотрим, что будет, если мы перейдем от базисного состояния для одного фильтра к базис­ному состоянию для другого фильтра. Начнем опять с

Атомы, выходящие из Т, оказываются в базисном состоянии (О Т) и не помнят, что когда-то они побывали в состоянии (+S). Некоторые говорят, что при фильтровании прибором Т мы «потеряли информацию» о былом состоянии (+S), потому что «возмутили» атомы, когда разделяли их прибором Т на три пучка. Но это неверно. Прошлая информация теряется не при разделении на три пучка, а тогда, когда ставятся перегородки, в чем можно убедиться в следующем ряде опытов.

Начнем с фильтра +S и обозначим количество прошедших сквозь него атомов буквой N. Если мы вслед за этим поставим фильтр О Т, то число атомов, которое выйдет из фильтра, окажется некоторой частью от первоначального их количества, скажем aN. Если мы затем поставим второй фильтр +S, то до конца дойдет лишь часть b атомов. Это можно записать следующим образом:

Если наш третий прибор S' выделяет другое состояние, скажем (0S), то через него пройдет другая часть атомов, скажем γ. Мы будем иметь

Теперь предположим, что мы повторили оба эти опыта, убрав из Т все перегородки. Тогда мы получим следующий замечательный результат:

В первом случае через S' прошли все атомы, во втором — ни одного! Это один из самых великих законов квантовой механики. То, что природа действует таким образом, вовсе не самоочевид­но; результаты, которые мы привели, отвечают в нашем идеа­лизированном случае квантовомеханическому поведению, на­блюдавшемуся в бесчисленных экспериментах.

§ 5. Ннтерферирующив амплитуды

Как же это может быть, что, когда переходят от (3.15) к (3.17), т. е. когда открывается больше каналов, через фильтры начинает проходить меньше атомов? Это и есть старый, глубо­кий секрет квантовой механики — интерференция амплитуд. С такого рода парадоксом мы впервые встретились в интерферен­ционном опыте, когда электроны проходили через две щели. Помните, мы тогда увидели, что временами кое-где получается меньше электронов, когда обе щели открыты, чем когда открыта одна. Численно это получается вот как. Можно написать ам­плитуду того, что атом пройдет в приборе (3.17) через Т и S' в виде суммы трех амплитуд — по одной для каждого из трех пучков в Т; эта сумма равна нулю:

Ни одна из трех отдельных амплитуд не равна нулю: например, квадрат модуля второй амплитуды есть ga [см. (3.15)], но их сумма есть нуль. Тот же ответ получился бы, если бы мы настро­или S’ на то, чтобы отбирать состояние (-S). Однако при рас­положении (3.16) ответ уже другой. Если обозначить амплитуду прохождения через Т и S' буквой а, то в этом случае мы будем иметь

В опыте (3.16) пучок сперва расщеплялся, а потом восста­навливался. Как мы видим, Шалтая-Болтая удалось собрать обратно. Информация о первоначальном состоянии (+ S) со­хранилась — все выглядит так, как если бы прибора Т вовсе не было. И это будет верно, что бы ни поставили за «до отказа раскрытым» прибором Т. Можно поставить за ним фильтр R — под каким-нибудь необычным углом — или что-угодно. Ответ будет всегда одинаков, как будто атомы шли в S' прямо из пер­вого фильтра S.

Итак, мы пришли к важному принципу: фильтр Т или любой другой с открытыми до отказа заслонками не приводит ни к каким изменениям. Надо только упомянуть одно добавочное условие. Открытый фильтр должен не только пропускать все три пучка, но и не вызывать в них неодинаковых возмущений. Например, в нем не должно быть сильного электрического поля близ одного из пучков, которого не было бы возле других. Причина заключается вот в чем: хотя это добавочное возмуще­ние может и не помешать всем атомам пройти сквозь фильтр, оно может привести к изменению фаз некоторых амплитуд. Тогда интерференция стала бы не такой, как была, и амплитуды (3.18) и (3.19) стали бы другими. Мы всегда будем предполагать, что таких добавочных возмущений нет.

Перепишем (3.18) и (3.19) в улучшенных обозначениях. Пусть i обозначает любое из трех состояний (+Т), (0Т)и (-Т); тогда уравнения можно написать так: