Выбрать главу

В нерелятивистской квантовой механике, где энергии не очень высоки и где вы не затрагиваете внутреннего устройства странных частиц и т. п., вы можете делать весьма сложные расчеты, не заботясь об этих деталях. Вы можете просто оста­новиться на импульсах и спинах электронов и ядер и все будет в порядке. В большинстве химических реакций и других низко­энергетических событий в ядрах ничего не происходит; они не возбуждаются. Дальше, если атом водорода движется мед­ленно и если он спокойно стукается о другие атомы водорода и ничего внутри него не возбуждается, не излучается, никаких сложностей не происходит, а все остается в основном состоя­нии энергии внутреннего движения, — в этом случае вы мо­жете пользоваться приближением, при котором об атоме во­дорода говорят как об отдельном предмете, или частице, не за­ботясь о том, что он может что-то внутри себя с собой сделать. Это будет хорошим приближением до тех пор, пока кинетиче­ская энергия в любом столкновении будет заметно меньше 10 эв, т. е. энергии, требуемой для того, чтобы возбудить атом водо­рода до следующего внутреннего состояния. Мы часто будем прибегать к приближению, при котором исключается возмож­ность внутреннего движения, тем самым уменьшая число де­талей, которые должны быть учтены в наших базисных состояниях. Конечно, при этом мы опускаем кое-какие явления, которые проявляются (как правило) при каких-то высших энер­гиях, но такое приближение сильно упрощает анализ физиче­ских задач. Например, можно рассуждать о столкновении двух атомов водорода при низкой энергии (или о любом химическом процессе), не заботясь о том, что атомные ядра могут возбуж­даться. Итак, подведем итог. Когда мы вправе пренебречь влиянием любых внутренних возбужденных состояний части­цы, мы вправе выбрать базисную совокупность из состояний с определенным импульсом и z-компонентой момента количе­ства движения.

Первой проблемой при описании природы является отыска­ние подходящего представления для базисных состояний. Но это только начало. Надо еще уметь сказать, что «случится». Если известны «условия» в мире в один момент, то мы хотим знать условия в более поздний момент. Значит, надо также найти законы, определяющие, как все меняется со временем. Мы теперь обращаемся ко второй части основ квантовой меха­ники — к тому, как состояния меняются во времени.

§ 4. Как состояния меняются во времени

Мы уже говорили о том, как отображать ход событий, где мы что-то пропускаем через прибор. Но самый привлекатель­ный, самый удобный для рассмотрения «опыт» состоит в том, что вы останавливаетесь и ждете несколько минут, т. е. вы приготовляете состояние j и, прежде чем проанализировать его, оставляете его в покое. Быть может, вы оставите его в покое в каком-то электрическом или магнитном поле — все зависит от физических обстоятельств. Во всяком случае, ка­кими бы ни были условия, вы от момента t1до момента t2 ос­тавляете объект на свободе. Допустим, что он выпущен из на­шего первого прибора в состоянии j в момент t1. А затем он проходит через «прибор», в котором он находится до момента t2. Во время такой «задержки» могут продолжаться различные события, прилагаться внешние силы,— словом, что-то в это время случается. После такой задержки амплитуда того, что этот объект обнаружится в состоянии c, уже не та же самая, какой она была бы, если бы задержки не было. Так как «ожи­дание» — это просто частный случай «прибора», то можно опи­сать то, что происходит, задав амплитуду в том же виде, как в уравнении (6.17). Поскольку операция «ожидания» представляет особую важность, мы вместо А обозначим ее U, а чтобы отмечать начальный и конечный моменты t1 и t2, будем писать U (t2, t1). Интересующая нас амплитуда — это

Как и всякая подобная амплитуда, она может быть представ­лена в той или иной базисной системе в виде

Тогда U описывается заданием полной совокупности амплитуд — матрицы

Кстати, следует отметить, что матрица <i|U(t2, t1|j> могла бы дать гораздо больше всяких деталей, чем нам обычно нужно. Теоретик высокого класса, работающий в физике высоких энергий, рассматривает примерно такие проблемы (потому что именно так обычно ставятся эксперименты): он начинает с двух частиц, скажем с протона и протона, налетающих друг на друга из бесконечности. (В лаборатории обычно одна частица покоится, другая же вылетает из ускорителя, кото­рый по атомным масштабам пребывает в бесконечности.) Они сталкиваются, и в итоге появляются, скажем, два К -мезона, шесть p-мезонов и два нейтрона с определенными импульсами в определенных направлениях. Какова амплитуда того, что это случится? Математика здесь выглядит так. Состояние j отмечает спины и импульсы сближающихся частиц. а c — это сведения о том, что получается в конце. К примеру, с какой амп­литудой вы получите шесть мезонов, идущих в таких-то и та­ких-то направлениях, а два нейтрона, вылетающих вот в этих направлениях и со спинами, торчащими так-то и так-то. Ины­ми словами, c отмечается заданием всех импульсов, спинов и т. п. конечных продуктов. И вот работа теоретика состоит в том, чтобы подсчитать амплитуду (6.27). Однако на самом деле его интересует только частный случай, когда t1=-Ґ, а t2 =+Ґ. (У нас не бывает экспериментальных данных о де­тальном ходе процесса, известно только, что вошло и что вышло. Предельный случай U (t2, t1)при t1®-Ґ и t2®+Ґ обозначается буквой S; теоретик нуждается в величине

<c|S|j>.

Или, если пользоваться формой (6.28), ему нужно вычислить матрицу

<i|S|j>,

называемую S-матрицей. Стало быть, если вы увидите физика-теоретика, который меряет шагами комнату и говорит: «Мне нужно только вычислить S-матрицу», — то вы теперь уже будете понимать, над чем он ломает голову.