§ 4. Тождественные частицы
Очередной опыт, который мы хотим описать, продемонстрирует одно из замечательных следствий квантовой механики. В нем снова встретятся такие физические события, в которых существуют два неразличимых пути и, как всегда при таких обстоятельствах, возникает интерференция амплитуд. Мы собираемся рассмотреть рассеяние одних ядер на других при сравнительно низкой энергии. Начнем, скажем, с a-частиц (это, как вы знаете, просто ядра гелия), бомбардирующих кислород. Чтобы облегчить анализ реакции, проведем его в системе центра масс, в которой скорости ядра кислорода и a-частицы перед столкновением противоположны, а после столкновения тоже противоположны (фиг. 1.7, а). (Величины скоростей, конечно, различны, поскольку массы различны.) Предположим также, что энергия сохраняется и что энергия столкновения настолько мала, что частицы ни раскалываются, ни переходят в возбужденное состояние. Причина, отчего частицы отклоняют друг друга, состоит попросту в том, что обе они заряжены положительно и, выражаясь классически, отталкиваются, проходя одна мимо другой. Рассеяние на разные углы будет происходить с различной вероятностью, и мы хотим выяснить угловую зависимость подобного рассеяния. (Конечно, все это можно рассчитать классически, и по удивительной случайности оказалось, что ответ на этот вопрос в квантовой механике и в классической — один и тот же. Это очень занятно, потому что ни при каком законе сил, кроме закона обратных квадратов, так не бывает, стало быть, это и впрямь случайность.)
Вероятность рассеяния в разных направлениях можно измерить в опыте, изображенном на фиг. 1.7,а.
Фиг. 1.7. Рассеяние a-частиц на ядрах кислорода, наблюдаемое в системе центра масс.
Счетчик в положении D1может быть сконструирован так, чтобы детектировать только a-частицы; счетчик в положении D2 может быть устроен так, чтобы детектировать кислород просто для проверки. (В системе центра масс детекторы должны смотреть друг на друга, в лабораторной — нет.) Опыт заключается в измерении вероятности рассеяния в разных направлениях. Обозначим через f(q) амплитуду рассеяния в счетчики, когда они расположены под углом q; тогда | f(q)|2 — наша экспериментально определяемая вероятность.
Можно было бы провести и другой опыт, в котором наши счетчики реагировали бы ина a-частицу, ина ядро кислорода. Тогда нужно сообразить, что будет, если мы решим не заботиться о том, какая из частиц попала в счетчик. Разумеется, когда кислород летит в направлении q, то с противоположной стороны, под углом (p-q), должна оказаться a-частица (фиг. 1.7,б). Значит, если f(q) — амплитуда рассеяния кислорода на угол 0, то f(р-q) — это амплитуда рассеяния a-частицы на угол θ. Таким образом, вероятность того, что какая-то частица окажется в счетчике, который находится в положении d1, равна
Заметьте, что в принципе оба состояния различимы. Даже если в этом опыте мы их не различали, мы могли бы это сделать. И в соответствии с нашими прежними рассуждениями мы, стало быть, должны складывать вероятности, а не амплитуды.
Приведенный выше результат справедлив для многих ядер. Мишенью здесь могут служить и кислород, и углерод, и бериллий, и водород. Но он неверен при рассеянии a-частиц на a-частицах. В том единственном случае, когда обе частицы в точности одинаковы, экспериментальные данные не согласуются с предсказаниями формулы (1.14). Например, вероятность рассеяния на угол 90° в точности вдвое больше предсказанной вышеизложенной теорией — с частицами, являющимися ядрами «гелия», номер не проходит. Если мишень из Не3, а налетают на нее a-частицы (Не4), то все хорошо. И только когда мишень из Не4, т. е. ее ядра тождественны падающим a-частицам, только тогда рассеяние меняется с углом каким-то особым образом.
Быть может, вы уже догадались, в чем дело? В счетчике a-частица может очутиться по двум причинам: либо из-за рассеяния налетевшей a-частицы на угол q, либо из-за рассеяния ее на угол (p-q). Как мы можем удостовериться, кто попал в счетчик — частица-снаряд или частица-мишень? Никак. В случае рассеяния a-частиц на a-частицах существуют две альтернативы, различить которые нельзя. Приходится дать амплитудам вероятности интерферировать при помощи сложения, и вероятность обнаружить в счетчике a-частицу есть квадрат этой суммы:
Это совсем не то, что (1.14). Возьмите, скажем, угол я/2 (это легче себе представить). При q=p/2 мы, естественно, имеем f(q)=f(p-q), так что из (1.15) вероятность оказывается равной
А с другой стороны, если бы не было интерференции, формула (1.14) дала бы только 2|f(p/2)|2. Так что на угол 90° рассеивается вдвое больше частиц, чем можно было ожидать. Конечно, и под другими углами результаты будут другие. И мы приходим к необычному выводу: когда частицы тождественны, происходит нечто новое, чего не бывало, когда частицы можно было друг от друга отличить. При математическом описании вы обязаны складывать амплитуды взаимоисключающих процессов, в которых обе частицы просто обмениваются ролями, и происходит интерференция.
Еще более неожиданное явление происходит с рассеянием электронов на электронах или протонов на протонах. Тогда не верен ни один из прежних результатов! Для этих частиц мы должны призвать на помощь совершенно новое правило: если попадающий в некоторую точку электрон обменивается своей индивидуальностью с другим электроном, то новая амплитуда интерферирует со старой в противофазе. Это все равно интерференция, но с обратным знаком. В случае a-частиц, когда происходит обмен a-частицами, достигающими счетчика, амплитуды интерферируют с одним и тем же знаком. А в случае электронов амплитуды обмена интерферируют с разными знаками. С точностью до одной детали, о которой будет сейчас сказано, правильная формула для электронов в опыте, подобном изображенному на фиг. 1.8, такова:
Это утверждение нуждается в уточнении, потому что мы не учли спин электрона (у a-частиц спина нет).
Фиг, 1.8. Рассеяние электронов на электронах.
Если спины сталкивающихся электронов параллельны, то процессы а и б неразличимы.
Спин электрона можно считать направленным либо вверх, либо вниз по отношению к плоскости рассеяния. Если энергия в опыте достаточно низка, то магнитные силы, возникающие от токов, будут малы и не повлияют на спин. Предположим в нашем анализе, что так оно и есть, так что нет шансов, чтобы спины при столкновении перевернулись. Какой бы спин у электрона ни был, он уносит его с собой. Мы видим теперь, что есть много возможностей. У частицы-снаряда и частицы-мишени оба спина могут быть направлены вверх, или вниз, или в разные стороны. Если они оба направлены вверх, как на фиг. 1.8 (или оба — вниз), то после рассеяния останется то же самое, и амплитуда процесса будет разностью амплитуд тех двух возможностей, которые показаны на фиг. 1.8. Вероятность обнаружить электрон в счетчике D1тогда будет даваться формулой (1.16).