Выбрать главу

Б итоге выясняется, что вдвое более вероятно обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состоя­ние, по сравнению с расчетом, проводимым в предположении, что частицы различны.

Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,— это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же маленький счетчик, кото­рый находится на каком-то расстоянии. Мы определим направ­ление 1, говоря, что оно смотрит в элемент поверхности dS1 счетчика. Направление же 2 смотрит в элемент поверхности dS2счетчика. (Считается, что счетчик представляет собой по­верхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно — шанс зарегистрировать любое фиксирован­ное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали ве­роятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1|а>=a1 определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а1и говорим, что она «нормирована» так, что вероятность того, что а рассеется в элемент площади dS1равна

Если вся площадь нашего счетчика DS и мы заставим dS1странст­вовать по этой площади, то полная вероятность того, что ча­стица а рассеется в счетчик, будет

Как и прежде, мы хотим считать счетчик настолько малым, что амплитуда а1на его поверхности не очень меняется; зна­чит, а1будет постоянным числом, и мы обозначим его через а. Тогда вероятность того, что частица а рассеялась куда-то в счетчик, равна

Таким же способом мы придем к выводу, что частица b (когда она одна) рассеивается в элемент площади dS2с ве­роятностью

(Мы говорим dS2, а не dS1в расчете на то, что позже ча­стицам а и b будет разрешено двигаться в разных направле­ниях.) Опять положим b2 равным постоянной амплитуде b; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна

Когда же имеются две частицы, то вероятность рассеяния а в dS1и b в dS2будет

Если нам нужна вероятность того, что обе частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS1 и dS2по всей площади DS; получится

Заметим, кстати, что это равно просто ра·рbвточности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.

Однако, когда две частицы тождественны, имеются две не­различимые возможности для каждой пары элементов поверх­ности dS1и dS2. Частица а, попадающая в dS2, и частица b, по­падающая в dS1, неотличимы от а в dS1и от b в dS2, так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dS1и dS2, есть

Однако сейчас, интегрируя по поверхности счетчика, нужно быть осторожным. Пустив dS1и dS2 странствовать по всей пло­щади DS, мы бы сосчитали каждую часть площади дважды, поскольку в (2.13) входит все, что может случиться с каждой парой элементов поверхности dS1и dS2. Но интеграл можно все равно подсчитать, если учесть двукратный счет, разделив результат пополам. Тогда мы получим, что Р2для тождествен­ных бозе-частиц есть

И опять это ровно вдвое больше того, что мы получили в (2.12) для различимых частиц.

Если вообразить на мгновение, что мы откуда-то знали, что канал b уже послал свою частицу в своем направлении, то мож­но сказать, что вероятность того, что вторая частица направит­ся в ту же сторону, вдвое больше того, чего можно было бы ожи­дать, если бы мы посчитали это событие независимым. Таково уж свойство бозе-частиц. что если есть одна частица в каких-то условиях, то вероятность поставить в те же условия вторую вдвое больше, чем если бы первой там не было. Этот факт часто формулируют так: если уже имеется одна бозе-частица в данном состоянии, то амплитуда того, что туда же, ей на голову, можно будет поместить вторую, в Ц2 раз больше, чем если бы первой там не было. (Это неподходящий способ формулировать резуль­тат с той физической точки зрения, какую мы избрали, но, если это правило последовательно применять, оно все же приводит к верному результату.)

§ 3. Состояния с n бозе-частицами

Распространим наш результат на тот случай, когда имеются n частиц. Вообразим случай, изображенный на фиг. 2.4.

Фиг. 2.4. Рассеяние n частиц в близкие конечные состояния.

Есть n частиц а, b, с, . . . , которые рассеиваются в направлениях 1, 2, 3, . . . , п. Все n направлений смотрят в небольшой счет­чик, который стоит где-то поодаль. Как и в предыдущем параг­рафе, выберем нормировку всех амплитуд так, чтобы вероятность того, что каждая частица, действуя по отдельности, попадет в элемент поверхности dS счет­чика, была равна

|< >|2dS.

Сперва предположим, что частицы все различимы, тогда вероятность того, что n частиц будут одновременно зарегистрированы в n разных элементах поверхности, будет равна

Опять примем, что амплитуды не зависят от того, где в счет­чике расположен элемент dS (он считается малым), и обозна­чим их .просто а, b, с, .... Вероятность (2.15) обратится в

Прогоняя каждый элемент dS по всей поверхности DS счет­чика, получаем, что Рn(разные) — вероятность одновременно зарегистрировать n разных частиц — равна

Это просто произведение вероятностей попаданий в счетчик каждой из частиц по отдельности. Все они действуют незави­симо — вероятность попасть для одной из них не зависит от того, сколько других туда попало.

Теперь предположим, что все эти частицы — идентичные бозе-частицы. Для каждой совокупности направлений 1, 2, 3, ... существует много неразличимых возможностей. Если бы, ска­жем, частиц было только три, появились бы следующие воз­можности:

Возникает шесть различных комбинаций. А если частиц n, то будет n!разных, хотя и не отличимых друг от друга, комбина­ций; их амплитуды положено складывать. Вероятность того, что n частиц будут зарегистрированы в n элементах поверхности, тогда будет равна