Состояние с меньшей энергией мы назовем «основным», с большей — «возбужденным». Пусть Nосн и Nвозб — средние числа атомов в основном и возбужденном состояниях; тогда для теплового равновесия при температуре Т из статистической механики следует
Каждый атом в основном состоянии может поглотить фотон и перейти в возбужденное состояние, и каждый атом в возбужденном состоянии может испустить фотон и перейти в основное состояние. При равновесии скорости этих двух процессов должны быть равны. Скорости пропорциональны вероятности событий и количеству имеющихся атомов. Пусть n — среднее число фотонов, находящихся в данном состоянии с частотой w. Тогда скорость поглощения из этого состояния есть Nocнn|а|2, а скорость испускания в это состояние есть Nвозб(n+1)|а|2, Приравнивая друг другу эти две скорости, мы получаем
Сопоставляя это с (2.30), имеем
Отсюда найдем
Это и есть среднее число фотонов в любом состоянии с частотой w при тепловом равновесии в полости. Поскольку энергия каждого фотона hw, то энергия фотонов в данном состоянии
есть nhw, или
Кстати говоря, мы уже получали подобное выражение в другой связи [см. гл. 41 (вып. 4), формула (41.15)]. Вспомните, что для гармонического осциллятора (скажем, грузика на пружинке) квантовомеханические уровни энергии находятся друг от друга на равных расстояниях hw, как показано на фиг. 2.7.
Фиг. 2.7. Уровни энергии гармонического осциллятора.
Обозначив энергию n-го уровня через nhw. мы получили, что средняя энергия такого осциллятора также давалась выражением (2.33). А сейчас это выражение было выведено для фотонов путем подсчета их числа и привело к тому же результату. Перед вами — одно из чудес квантовой механики. Если начать с рассмотрения таких состояний или таких условий для бозе-частиц, когда они друг с другом не взаимодействуют (мы ведь предположили, что фотоны не взаимодействуют друг с другом), а затем считать, что в эти состояния могут быть помещены нуль, или одна, или две и т. д. до n частиц, то оказывается, что эта система ведет себя во всех квантовомеханических отношениях в точности, как гармонический осциллятор. Таким осциллятором считается динамическая система наподобие грузика на пружинке или стоячей волны в резонансной полости. Вот почему можно представлять электромагнитное поле фотонными частицами. С одной точки зрения можно анализировать электромагнитное поле в ящике или полости в терминах множества гармонических осцилляторов, рассматривая каждый тип колебаний, согласно квантовой механике, как гармонический осциллятор. С другой, отличной точки зрения ту же физику можно анализировать в терминах тождественных бозе-частиц. И итоги обоих способов рассуждений всегда точно совпадают. Невозможно установить, следует ли на самом деле электромагнитное поле описывать в виде квантуемого гармонического осциллятора или же задавать количество фотонов в каждом состоянии. Оба взгляда на вещи оказываются математически тождественными. В будущем мы сможем с равным правом говорить либо о числе фотонов в некотором состоянии в ящике, либо о номере уровня энергии, связанного с некоторым типом колебаний электромагнитного поля. Это два способа говорить об одном и том же. То же относится и к фотонам в пустом пространстве. Они эквивалентны колебаниям полости, стенки которой отошли на бесконечность.
Мы подсчитали среднюю энергию произвольного частного типа колебаний в ящике при температуре T; чтобы получить закон излучения абсолютно черного тела, остается узнать только одно: сколько типов колебаний бывает при каждой энергии. (Мы предполагаем, что для каждого типа колебаний найдутся такие атомы в ящике — или в его стенках,— у которых есть Уровни энергии, способные приводить к излучению этого типа колебаний, так что каждый тип может прийти в тепловое равновесие.) Закон излучения абсолютно черного тела обычно формулируют, указывая, сколько энергии в единице объема уносится светом в малом интервале частот от со до w+Dw. Так что нам нужно знать, сколько типов колебаний с частотой в интервале Dw имеется в ящике. Хотя вопрос этот то и дело возникает в квантовой механике, это все же чисто классический вопрос, касающийся стоячих волн.