Выбрать главу

§ 7. Принцип запрета

Ферми-частицы ведут себя совершенно иначе. Посмотрим, что произойдет, если мы попытаемся поместить две ферми-частицы в одно и то же состояние. Вернемся к нашему первона­чальному примеру и поинтересуемся амплитудой того, что две идентичные ферми-частицы рассеются в почти одинаковом на­правлении. Амплитуда того, что частица а пойдет в направ­лении 1, а частица bв направлении 2, есть

<1|a>.<2|b>,

тогда как амплитуда того, что направления вылетающих частиц обменяются местами, такова:

<2|а><1|b>.

Раз мы имеем дело с ферми-частицами, то амплитуда процесса является разностью этих двух амплитуд:

<1|а><2|b>-<2|а><1|b>. (2.44)

Следует сказать, что под «направлением 1» мы подразумеваем, что частица обладает не только определенным направлением, но и заданным направлением своего спина, а «направление 2» почти совпадает с направлением 1 и отвечает тому же направ­лению спина. Тогда <1|а> и <2|а> будут примерно равны. (Этого могло бы и не быть, если бы состояния 1 и 2 вылетающих частиц не обладали одинаковым спином, потому что тогда по каким-то причинам могло бы оказаться, что амплитуда зависит от направления спина.) Если теперь позволить направлениям 1 и 2 сблизиться друг с другом, то полная амплитуда в уравне­нии (2.44) станет равной нулю. Для ферми-частиц результат много проще, чем для бозе-частиц. Просто абсолютно невоз­можно, чтобы две ферми-частицы, например два электрона, оказались в одинаковом состоянии. Вы никогда не обнаружите два электрона в одинаковом положении и со спинами, направленными в одну сторону. Двум электронам невозможно иметь один и тот же импульс и одно и то же направление спина. Если они оказываются в одном и том же месте или в одном и том же состоянии движения, то единственное, что им остается,— это завертеться навстречу друг другу.

Каковы следствия этого? Имеется множество замечатель­ных эффектов, проистекающих из того факта, что две ферми-частицы не могут попасть в одно и то же состояние. На самом деле почти все особенности материального мира зависят от этого изумительного факта. Все разнообразие, представленное в периодической таблице элементов, в основе своей является следствием только этого правила.

Конечно, мы не можем сказать, на что был бы похож мир, если бы это правило — и только оно одно — изменилось; ведь оно является частью всей структуры квантовой механики, и невозможно сказать, что бы еще изменилось, если бы правило, касающееся ферми-частиц, стало бы другим. Но все же попро­буем представить себе, что случилось бы, если бы переменилось только это правило. Во-первых, можно показать, что каждый атом остался бы более или менее неизменным. Начнем с атома водорода. Он заметно не изменился бы. Протон ядра был бы окружен сферически симметричным электронным облаком (фиг. 2.11, а).

Фиг. 2.11. Так могли бы выглядеть атомы, если бы электроны вели себя как бозе-частицы.

Как мы уже писали в гл. 38 (вып. 3), хоть элект­рон и притягивается к центру, принцип неопределенности тре­бует, чтобы было равновесие между концентрацией в простран­стве и концентрацией по импульсу. Равновесие означает, что распределение электронов должно характеризоваться опреде­ленной энергией и протяженностью, определяющими характе­ристические размеры атома водорода.

Пусть теперь имеется ядро с двумя единицами заряда, на­пример ядро гелия. Это ядро будет притягивать два электрона, и, будь они бозе-частицами, они бы, если не считать их электри­ческого отталкивания, сплотились близ ядра как можно тесней. Атом гелия выглядел бы так, как на фиг. 2.11, б. Точно так же и атом лития, у которого ядро заряжено трехкратно, обладал бы электронным распределением, похожим на то, что изобра­жено на фиг. 2.11, в. Каждый атом выглядел бы более или ме­нее, как раньше: круглый шарик, все электроны в котором си­дят близ ядра; не было бы никаких выделенных направлений и никаких сложностей.

Но из-за того, что электроны — это ферми-частицы, дейст­вительное положение вещей совершенно иное. Для атома водорода оно в общем-то не меня­ется. Единственное отличие в том, что у электрона есть спин (показан на фиг. 2.12, а стрелочкой).

Фиг. 2.12. Атомные конфигурации, для настоящих, фермиевского типа электронов со спином. 1/2.