Выбрать главу

Точно такое же уравнение существует и для плотностей но­сителей n-типа:

Если мы знаем равновесные плотности в каждом из двух мате­риалов, то любое из этих уравнений даст нам разность потен­циалов на переходе.

Заметьте, что для того, чтобы (12.10) и (12.11) давали оди­наковые значения разности потенциалов V, произведение NpNnдолжно быть в p-области и в n-области одним и тем же.

Фаг. 12.11. Распределение по­тенциала вдоль транзистора, если не приложено напряжение.

(Вспомните, что qn=-qp.) Но мы еще раньше видели, что это произведение зависит только от температуры и от ширины энергетической щели кристалла. Если обе части кристалла находятся при одинаковой температуре, оба уравнения будут совместны, давая одинаковое значение разности потенциалов.

Но раз между двумя сторонами перехода имеется разность потенциалов, то это напоминает батарейку. Если соединить re-область с p-областью проволочкой, может по ней пойдет ток? Это будет замечательно, ведь тогда ток будет идти без остановки, не истощая материала, и мы будем обладать бесконечным источ­ником энергии в нарушение второго закона термодинамики! Но если вы действительно соедините p-область с n-областью проводами, никакого тока не будет. И легко понять почему.

Возьмем сперва проводничок из материала без примесей. Если подсоединить его к re-области, получится переход, на котором возникнет разность потенциалов. Пусть, скажем, она составит половину всей разности потенциалов между p- и n-областями. А когда мы подведем нашу чистую проволоку к p-области пере­хода, то там снова, на новом переходе, возникнет разность по­тенциалов, опять равная половине падения потенциала на pn-переходе. Во всех переходах разности потенциалов так приладятся друг к другу, что никакой ток в схеме не пойдет. И какой бы вы проволокой ни начали соединять обе стороны pn-перехода, у вас всегда выйдет два новых перехода, и до тех пор, пока температура всех переходов одинакова, скачки по­тенциалов на переходах будут компенсировать друг друга и тока не будет. Оказывается, однако (если вы рассчитаете все детали), что если у части переходов температура отличается от температуры других частей, то ток пойдет. Этот ток будет нагревать одни переходы и охлаждать другие, и тепловая энер­гия будет превращаться в электрическую. Это явление опреде­ляет собой действие термопар, применяемых для измерения температуры, и термоэлектрических генераторов. То же явле­ние используется и в небольших холодильниках.

Но если мы не в состоянии измерять разность потенциалов между двумя сторонами p—n-перехода, то откуда уверенность, что перепад потенциалов, показанный на фиг. 12.9, действитель­но существует? Ну, во-первых, можно осветить переход светом. Когда фотоны света поглощаются, они могут образовать пару электрон — дырка. В том сильном электрическом поле, кото­рое существует в переходе (равном наклону потенциальной кривой на фиг. 12.9), дырку затянет в p-область, а электрон — в n-область. Если теперь обе стороны перехода подсоединить ко внешней цепи, эти добавочные заряды вызовут ток. Энергия света перейдет в электрическую энергию перехода. Солнечные батареи, которые генерируют для спутников электрическую мощность, действуют именно на этом принципе.

Обсуждая свойства полупроводникового перехода, мы пред­полагали, что дырки и электроны действуют более или менее независимо, если не считать того, что они как-то все же приходят в тепловое равновесие. Когда мы говорили о токе, получающемся при освещении перехода светом, то предполагали, что электрон или дырка, образующиеся в области перехода, прежде чем анни­гилировать с носителем противоположной полярности, успеют попасть в само тело кристалла. В непосредственной близости от перехода, где плотности носителей обоих знаков примерно одинаковы, аннигиляция пар электрон — дырка (называемая часто «рекомбинацией») — очень важный эффект, и его следует принимать во внимание при детальном анализе полупроводни­кового перехода.

Мы предполагали, что дырка или электрон, образуемые в области перехода, имеют хороший шанс еще до рекомбинации попасть в основное тело кристалла. Типичное время, требую­щееся электрону или дырке для того, чтобы найти противопо­ложного партнера и аннигилировать, для типичных полупро­водниковых материалов колеблется между 10-3 и 10-7 сек. Кста­ти, это время много больше времени среднего свободного пробега t между столкновениями с узлами рассеяния в кри­сталле,— того времени, которым мы пользовались при анализе проводимости. В типичном p—n-переходе время, требуемое на то, чтобы смести в тело кристалла электрон или дырку, воз­никшую в области перехода, намного меньше времени рекомби­нации. Поэтому большинство пар вливается во внешний ток.

§ 5. Выпрямление на полупроводниковом переходе

Теперь мы покажем, как получается, что p—n-переход дей­ствует как выпрямитель. Если мы к переходу приложим напря­жение одного знака, то пойдет большой ток, если другого — тока почти не будет. А если к переходу приложить переменное напряжение, то ток пойдет только в одну сторону — он «выпря­мится». Посмотрим еще раз, что получается в условиях равно­весия, описанных кривыми фиг. 12.9. В материале p-типа имеет­ся высокая концентрация Npположительных носителей. Эти носители повсюду диффундируют, и некоторое их количество каждую секунду приближается к переходу. Этот ток положи­тельных носителей, достигающих перехода, пропорционален Np. Большая часть их, однако, разворачивается обратно, не будучи в состоянии взять высокий потенциальный холм у пере­хода, и только доля их проходит дальше. Имеется также ток положительных носителей, приближающихся к пе­реходу с другой стороны. Этот ток тоже пропорционален плот­ности положительных носителей в n-области, но здесь плотность носителей намного ниже плотности в p-области. Когда положи­тельные носители приближаются из n-области к переходу, они обнаруживают перед собой холм с отрицательным склоном и сходу соскальзывают под гору, на p-сторону перехода. Обо­значим этот ток I0. В условиях равновесия токи в обе стороны одинаковы. Значит, можно ожидать, что будет выполняться следующее соотношение:

Вы замечаете, что оно на самом деле совпадает с (12.10). Мы просто вывели его другим способом.

Допустим, однако, что мы снизили напряжение на n-стороне перехода на величину DV — это можно сделать, приложив к переходу внешнюю разность потенциалов. Теперь разница в потенциалах по обе стороны потенциального холма уже не V, а V-DV. У тока положительных носителей из p-области в n-область теперь в показателе экспоненты будет стоять именно эта разность потенциалов. Обозначая этот ток через I1; имеем

Этот ток превосходит ток I0 в раз. Значит, между I1 и I0 существует следующая связь:

Ток из p-области при приложении внешнего напряжения DV растет по экспоненте. А ток положительных носителей из n-области остается постоянным, пока DV не слишком велико.