Можно также сделать транзистор, поменяв на фиг. 12.11 местами материалы p-типа и n-типа. Тогда получится так называемый n—p—n-транзистор. В таком транзисторе основной ток — это ток электронов, текущий от эмиттера к базе, а оттуда — в коллектор. Разумеется, все рассуждения, которые мы проводили для p—n—p-транзистора, в равной мере применимы и к n—p—n-транзистору, если только переменить знаки потенциалов электродов.
*Во многих книжках эта же энергетическая диаграмма истолковывается иначе. Шкалу энергий относят только к электронам. Вместо того чтобы думать об энергии дырки, говорят о той энергии, которую имел бы электрон, если бы он заполнил дырку. Эта энергия меньше, нежели энергия свободного электрона, причем как раз на ту величину, которая показана на фиг. 12.5. При такой интерпретации шкалы энергий ширина энергетической щели — это наименьшая энергия, которой нужно снабдить электрон, чтобы перевести его из связанного состояния в зону проводимости.
Литература: Ч. Киттель, Введение в физику твердого тела, М.—Л., 1958, гл. 13, 14, 18.
Глава 13
ПРИБЛИЖЕНИЕ НЕЗАВИСИМЫХ ЧАСТИЦ
§ 1. Спиновые волн
§ 2. Две спиновые волны
§ 3. Независимые частицы
§ 4. Молекула бензола
§ 5. Еще немного органической химии
§ 6. Другие применения приближения
§ 1. Спиновые волны
В гл. 11 мы разработали теорию распространения электрона или любой другой «частицы», например атомного возбуждения, вдоль кристаллической решетки. В предыдущей главе мы эту теорию применили к полупроводникам. Но хотя электронов у нас всегда было много, мы тем не менее неизменно пренебрегали каким-либо взаимодействием между ними. Это, конечно, было не более чем приближение, и мы сейчас постараемся глубже разобраться в самой мысли о том, что взаимодействием между электронами разрешается пренебрегать. Мы к тому же воспользуемся возможностью продемонстрировать новые применения теории распространения частиц. Поскольку мы по-прежнему будем продолжать пренебрегать взаимодействием между частицами, то фактически в этой главе будет очень мало нового, разве что новые приложения. Однако первый пример, который мы хотим рассмотреть,— это пример, в котором есть возможность совершенно точно выписать правильные уравнения для случая, когда «частиц» больше чем одна. Из них мы сможем увидеть, как делается приближение пренебрежения взаимодействием. Впрочем, мы не будем слишком тщательно анализировать эту проблему.
В качестве первого примера рассмотрим «спиновую волну» в ферромагнитном кристалле.
Теории ферромагнетизма мы касались в гл.36 (вып. 7). При нулевой температуре все спины электронов, которые дают вклад в магнетизм всего ферромагнитного кристалла, параллельны между собой. Между спинами существует энергия взаимодействия, которая ниже всего тогда, когда все спины направлены вниз. Но при ненулевой температуре имеется какая-то вероятность того, что часть спинов перевернется. Эту вероятность тогда мы приближенно подсчитывали. На этот раз мы разовьем квантовомеханическую теорию явления, чтобы знать, что делать, если нужно будет решить задачу точнее. Но мы все еще будем прибегать к идеализации; будем считать, что электроны расположены вблизи атомов, а спины взаимодействуют только со своими соседями.
Рассмотрим такую модель: пусть в каждом атоме все электроны, кроме одного, спарены, и весь магнитный эффект обязан тому, что в каждом атоме остается один неспаренный электрон со спином 1/2. Вообразим еще, что эти электроны расположены в тех самых узлах решетки, где находятся атомы. Модель в общих чертах отвечает металлическому никелю.
Кроме того, допустим, что любая пара вращающихся соседей-электронов взаимодействует друг с другом и что каждое такое взаимодействие добавляет в энергию системы по слагаемому;
Здесь sпредставляют собой спины, а суммирование идет по всем парам соседей-электронов. Мы уже говорили о подобной энергии взаимодействия, рассматривая сверхтонкое расщепление водорода, вызываемое взаимодействием магнитных моментов электрона и протона в атоме водорода. Тогда мы выражали это в виде Аsе·sр. На этот раз для данной пары, скажем для электронов из атома № 4 и из атома № 5, гамильтониан имеет вид —Ks4·s5. Каждая такая пара дает по одному слагаемому, а весь гамильтониан (как это бывает и с классическими энергиями) есть сумма таких слагаемых для каждой взаимодействующей пары. Энергия написана с множителем —К, так что положительное К отвечает ферромагнетизму, т. е. тому случаю, когда наинизшая энергия получается при параллельности соседних спинов. В реальном кристалле могут появиться и другие слагаемые — взаимодействие с соседом через одного и т. д., но на нашем уровне такие усложнения нам не понадобятся.
Располагая гамильтонианом (13.1), мы обладаем и полным описанием ферромагнетика (в рамках нашего приближения), так что из него должны получиться все магнитные свойства. Кроме того, из него же должны получаться и термодинамические свойства при намагничивании. Если мы сможем определить все уровни энергии, то можно будет найти и свойства кристалла при температуре Т, основываясь на том, что для системы вероятность оказаться в данном состоянии с энергией Е пропорциональна
Некоторые задачи мы сможем разобрать на простом примере, когда все атомы лежат на одной прямой — случай одномерной решетки. Все эти представления вы потом легко сможете распространить на трехмерную решетку. Возле каждого атома имеется электрон; у него есть два возможных состояния — либо спином вверх, либо вниз, и вся система описывается перечислением направлений спинов. В качестве гамильтониана системы возьмем оператор энергии взаимодействия. Интерпретируя спиновые векторы (13.1) как сигма-операторы, или сигма-матрицы, мы напишем для линейной решетки
В этом уравнении для удобства написан множитель А/2 (так что некоторые из дальнейших уравнений в точности совпадут с уравнениями из гл. 11).
Каково же наинизшее состояние системы? Состояние наинизшей энергии это то состояние, когда все спины параллельны, скажем все глядят вверх. Это состояние можно обозначить ! ... + + + + ...>, или|осн.), чтобы подчеркнуть, что оно «основное», наинизшее. Энергию этого состояния легко себе представить. Можно, например, расписать все сигма-векторы через s^х, s^уи s^г, аккуратно подсчитать, каков вклад каждого из них в энергию основного состояния, и все затем сложить. Путь, однако, можно сильно сократить. В гл. 10, § 2 (вып. 8) мы видели, что s^i·s^jможет быть выражено через спин-обменный оператор Паули: