где оператор р^ijспин-°бм обменивает спины i-го и j-го электронов. После этой подстановки гамильтониан обращается в
Теперь уже легко подсчитать, что происходит в различных состояниях. Например, если и i и j смотрят вверх, то обмен спинами ничего не меняет, так что P^ij, действуя на состояние, опять приводят к тому же состоянию, т. е. оно равнозначно умножению на +1. Выражение Р^ij -1/2 просто равно 1/2. (В дальнейшем слова «спин-обм» над Р мы писать не будем.)
В основном состоянии все спины направлены вверх; значит, обмен любой парой спинов приводит опять к исходному состоянию. Основное состояние является стационарным. Если подействовать на него гамильтонианом, получится опять то же состояние, умноженное на сумму чисел —(А/2), по одному на каждую пару спинов. Иначе говоря, энергия системы в основном состоянии составляет по —А/2 на атом.
Теперь подсчитаем энергии некоторых возбужденных состояний. Удобно будет отсчитывать энергии от основного состояния, т. е. в качестве нулевой энергии выбрать энергию основного состояния. Этого можно добиться, добавив к каждому слагаемому в гамильтониане по энергии А/2. Тогда 1/2 в (13.4) просто заменится единицей. Наш новый гамильтониан будет равен
При таком гамильтониане энергия низшего состояния равна нулю; спин-обменный оператор равнозначен умножению на единицу (для основного состояния), что сокращается с единицей в каждом слагаемом.
Для описания состояний, отличных от основного, нам понадобится своя совокупность базисных состояний. Удобно подойти к делу так: сгруппировать состояния в соответствии с тем, у скольких электронов спин направлен вниз: у одного ли, у двух и т. д. Конечно, состояний, когда один спин направлен вниз, очень много: он может быть опрокинут, скажем, у атома № 4 или у № 5, или у № 6... И можно, конечно, в качестве базисных состояний выбрать именно такие состояния, обозначив их |4>, |5>, | 6>, ... Однако для дальнейшего удобнее, если мы будем отмечать «из ряда вон выходящий атом» (тот, у которого спин направлен вниз) его координатой х. Иначе говоря, мы определим состояние | х5> как такое, в котором все электроны вращаются спинами вверх, и один только (тот, что возле атома в точке х5) вращается спином вниз (фиг. 13.1).
Фиг. 13.1. Базисное состояние |x5> системы спинов, расположенных по одной линии.
Все спины направлены вверх, а тот, что в х 5 , перевернут.
Вообще, |хn> будет обозначать состояние с одним перевернутым спином, расположенным в координате хn n-гоатома.
Как же действует гамильтониан (13.5) на состояние |x5>? Один из членов гамильтониана это, скажем, — А (Р^7,8-1). Оператор P^7,8 обменивает спинами два соседних атома № 7 и № 8. Но в состоянии |x5> они оба направлены вверх, так что ничего не меняется; Р^7,8 равнозначно умножению на единицу:
Отсюда следует
Стало быть, все члены гамильтониана, кроме тех, куда входит атом № 5, дадут нуль. Операция P^4,5, действуя на состояние |x5>, обменивает спинами атом № 4 (со спином вверх) и атом № 5 (со спином вниз). В результате появляется состояние, в котором все спины смотрят вверх, кроме атома в точке 4. Иначе говоря,
Точно так же
Значит, изо всего гамильтониана выживут только члены
Действуя на |x5>, они дадут соответственно
В итоге
Когда гамильтониан действует на состояние |x5>, то возникает некоторая амплитуда оказаться в состояниях | x4> и |х6>. Это просто означает, что существует определенная амплитуда того, что направленный книзу спин перепрыгнет к соседнему атому. Значит, из-за взаимодействия между спинами, если вначале один спин был направлен вниз, имеется некоторая вероятность того, что позднее вместо него вниз будет смотреть другой. При действии на состояние | хn>гамильтониан дает
Заметьте, в частности, что если взять полную систему состояний только с одним спином-«перевертышем», то они будут перемешиваться только между собой. Гамильтониан никогда не перемешает эти состояния с другими, в которых спинов-«перевертышей» больше. Пока вы только обмениваетесь спинами, вы никогда не сможете изменить общего количества перевертышей. Удобно будет использовать для гамильтониана матричное обозначение, скажем,
уравнение (13.7) эквивалентно следующему:
Каковы же теперь уровни энергии для состояний с одним перевернутым спином? Пусть, как обычно, Сn— амплитуда того, что некоторое состояние |y> находится в состоянии |xn>. Если мы хотим, чтобы |y> было состоянием с определенной энергией, то все Сnобязаны одинаково меняться со временем, а именно по правилу
Подставим это пробное решение в наше обычное уравнение Гамильтона
используя в качестве матричных элементов (13.8). Мы, конечно, получим бесконечное количество уравнений, но все их можно будет записать в виде
Перед нами опять в точности та же задача, что и в гл. 11, только там, где раньше стояло Е0, теперь стоит 2А. Решения отвечают амплитудам Сn(амплитудам с перевернутым спином), которые распространяются вдоль решетки с константой распространения k и энергией
Е=2A(1-coskb), (13.12)
где b — постоянная решетки.
Решения с определенной энергией отвечают «волнам» переворота спина, называемым «спиновыми волнами». И для каждой длины волны имеется соответствующая энергия. Для больших длин волн (малых k) эта энергия меняется по закону
Е=Аb2k2. (13.13)
Как и прежде, мы можем теперь взять локализованный волновой пакет (содержащий, однако, только длинные волны), который соответствует тому, что электрон-«перевертыш» окажется в такой-то части решетки. Этот перевернутый спин будет вести себя как «частица». Так как ее энергия связана с k формулой (13.13), то эффективная масса «частицы» будет равна
Такие «частицы» иногда именуют «магнонами».