Выбрать главу

Как же поступает химик в таких случаях? Он анализирует множество молекул сходного типа и выводит какие-то эмпири­ческие правила. Он учит, например: для расчета энергии связи берите вот такое-то и такое-то значение А, а для получения при­ближенно верного спектра поглощения возьмите другое значе­ние A. Вам может показаться, что это звучит слегка абсурдно. И впрямь, в ушах физика, который пытается объяснить всю при­роду из первоначальных принципов, это звучит довольно дико. Но перед химиком задача другая. Он обязан заранее догадаться, что произойдет с молекулами, которых до сих пор не было или которые до конца не поняты. Ему нужен ряд эмпирических пра­вил и ему совершенно все равно, откуда они возьмутся. Так что теорией он пользуется совсем не так, как физик. Он берет урав­нения, в которых отразился свет истины, а потом вынужден менять в них константы, делая эмпирические поправки.

В случае бензола основная причина несогласия лежит в нашем предположении, что электроны независимы; теория, из которой мы исходили, на самом деле незаконна. Тем не менее на нее падает какой-то отблеск истины, потому что результаты, по-видимому, идут в правильном направлении. При помощи таких уравнений плюс некоторые эмпирические правила (со множеством исключений) химик-органик прокладывает свой путь через чащу тех сложнейших вещей, которые он решился изучать. (Не забывайте, что в действительности причина, по которой физику удается выводить что-то из основных принципов, состоит в том, что он выбирает только простые задачи. Он ни­когда не решает задач с 42 или даже с 6 электронами. До сих пор он смог рассчитать с приличной точностью только атом водо­рода да атом гелия.)

§ 5. Еще немного органической химии

Можно ли применить все эти идеи для изучения других молекул? Рассмотрим такую молекулу, как бутадиен (1,3); она показана на фиг. 13.9 с помощью обычной картины валентных связей.

Фиг. 13.9. Изображение с по­мощью валентных связей молекулы бутадиена (1,3).

Мы можем опять затеять те же игры с лишней четверкой электронов, отвечающей двум двойным связям. Если ее убрать, то остается четыре атома углерода по одной линии. А как рас­считывать такую линию, вы уже знаете. «Но позвольте,— скажете вы,—я ведь только знаю, как решать бесконечную ли­нию». Однако решения для бесконечной линии включают также и решения для конечной. Следите. Пусть N — число атомов на прямой; пронумеруем их 1, 2, ..., N (фиг. 13.10).

Фиг. 13.10. Отрезок прямой с N молекулами.

В уравне­нии для амплитуды в точке 1 у вас не появится член для пере­хода из точки 0. Точно так же уравнение для точки N будет отличаться от того, которым мы пользовались для бесконечной прямой, потому что никакого вклада точки N+1 не будет. Но представьте, что мы придумали решение для бесконечной прямой со следующим свойством: амплитуда оказаться вблизи атома 0 есть нуль и амплитуда оказаться вблизи атома N+1 тоже нуль. Тогда система уравнений для всех точек от 1 до N на конечной линии также будет удовлетворяться. Казалось бы, таких решений не бывает, ибо все наши решения имеют вид и обладают всюду одинаковой абсолютной величиной. Но вспомните, что энергия зависит только от абсолютной вели­чины k, так что другим в равной мере законным решением было бы. И то же справедливо для любой суперпозиции этих двух решений. Вычитая их, мы получим решение sin kxn, а оно удовлетворяет требованию, чтобы амплитуда при х=0 была нулем. И оно все еще соответствует энергии Е0-2Аcoskb. Далее, подходящим выбором величины k можно также добиться, чтобы амплитуда в xN+1была тоже нулем. Для этого нужно, чтобы (N+1)kb было кратным p, т. е. чтобы

где s — целое число между 1 и N. (Берутся только положительные k, потому что каждое решение содержит и +k, и -k; перемена знака k опять дает то же состояние.) Для молекулы бутадиена N=4, так что имеется четверка состояний с

Уровни энергии можно теперь представить, пользуясь кру­говой диаграммой, похожей на бензольную. На сей раз возьмем полукруг, деленный на пять равных частей (фиг. 13.11).

Фиг. 13.11. Энергетические уровни бутадиена.

Точка внизу отвечает s=0, что не дает какого-либо состояния. То же самое справедливо для точки наверху, отвечающей s=N+1. Оставшиеся четыре точки дают четверку разрешенных энергий. Имеется четыре стационарных состояния, чего и следовало ожидать, судя по четырем базисным состояниям. В круговой диаграмме углы равны p/5, или 36°. Наинизшая энергия оказы­вается равной Е01,618A. (Каких только чудес не бывает в математике! Золотое сечение греков дает нам наинизшее энер­гетическое состояние молекулы бутадиена, как это следует из

нашей теории!)

Теперь уже ясно, как меняется энергия молекулы бутадиена, когда в нее вводят четверку электронов. Эта четверка заполнит два нижних уровня — каждый будет заполнен парой электро­нов с противоположными спинами. Полная энергия будет равна

Это выглядит вполне разумно. Энергия чуть пониже, чем просто у двух двойных связей, но связь не так сильна, как в бензоле. Во всяком случае, именно так химик анализирует некоторые ор­ганические молекулы.

Но в его распоряжении есть не только энергии, но и ампли­туды вероятности. Зная амплитуды для каждого состояния и зная, какие состояния заполнены, он может сообщить нам, какова вероятность нахождения электрона в каком-нибудь месте молекулы. Те места, где пребывание электрона более вероятно, вступают в игру при таких химических замеще­ниях, которые требуют, чтобы электрон обслуживал и другую группу атомов. Другие же места молекулы участвуют в таких замещениях, при которых молекула имеет тенденцию передать системе еще один электрон.

Подобные же идеи могут помочь нам получить правильное представление даже о таких сложных молекулах, как хлоро­филл, один из вариантов которого показан на фиг. 13.12.

Фиг. 13.12. Молекула хлоро­филла.

Обра­тите внимание, что двойные и одиночные связи образуют длинное замкнутое кольцо с двадцатью интервалами.

Лишние электроны двойных связей могут бегать по этому кольцу. При помощи метода независимых частиц можно получить всю совокупность энергетических уровней. От пе­реходов между этими уровнями возникают сильные линии поглощения, которые лежат в видимой части спектра и при­дают этой молекуле ее густой цвет. И другие сложные мо­лекулы, такие, как ксантофилл, от которого листья по­лучают красную окраску, можно изучить таким же точно способом.

В органической химии при работе с подобного рода теорией использу­ют еще одну идею. Она, пожалуй, самая удачная из всех (или по крайней мере в определенном смы­сле самая точная). Она отвечает на такой вопрос: в каких случаях получается особенно прочная химическая связь? Ответ очень интере­сен. Возьмем вначале для примера бензол и представим ряд со­бытий, которые произойдут, если мы начнем с шестикратно иони­зованной молекулы и примемся добавлять новые и новые электроны. Тогда нужно будет говорить о различных ионах бензола — отрицательных и положительных. Изобразим энер­гию иона (или нейтральной молекулы) как функцию числа элек­тронов. Если мы примем Е0=0 (мы не знаем, чему равно E0), то получим кривую, показанную на фиг. 13.13.