Выбрать главу

Приближение независимых частиц оказалось полезным для широкого круга явлений — от физики твердого тела до химии, от биологии до ядерной физики. Такое приближение часто очень грубо, но оно в состоянии помочь нам понять, отчего бывают особо устойчивые условия — отчего возникают оболочки. Но поскольку оно опускает всю сложность взаимодействий между индивидуальными частицами, нас не должно удивлять, что часто ему не удается правильно предсказать многие важные детали.

* Отношение сторон прямоугольника, который можно разбить на квадрат и на подобный ему прямоугольник.

* Когда имеется пара состояний (с разными распределениями ам­плитуд) с той же энергией, мы говорим, что эта пара состояний «вырож­дена». Заметьте, что энергией E 0 -А могут обладать четыре электрона.

* Могло бы показаться, что при четном N есть N+1 состояний. Это не так, ибо s = ±.N/2 дают одно и то же состояние.

* Квазичастицы обсуждаемого типа могут действовать и как бозе-и как ферми-частицы; и, как и у свободных частиц, частицы с целым спином суть бозоны, с полуцелым—фермионы. «Магнон» символизирует, что электрон со спином, направленным вверх, перевертывается вниз. Спин меняется на единицу. Значит, у магнона спин целый и он — бозон.

* Основное состояние здесь на самом деле «вырождено». Существуют и другие состояния с той же энергией, например, когда все спины смотрят вниз или в любую другую сторону. Но наложение самого слабого внешнего поля в направлении z снабдит все эти состояния различной энергией, и истинным основным состоянием окажется как раз то, которое мы выбрали.

Глава 14

ЗАВИСИМОСТЬ АМПЛИТУД ОТ МЕСТА

§ 1. Как меняются амплитуды вдоль прямой

§ 2. Волновая функция

§ 3. Состояния с определенным импульсом

§ 4. Нормировка состояний с определенной координатой х

§ 5. Уравнение Шредингера

§ 6. Квантованные уровни энергии

§ 1. Как меняются амплитуды вдоль прямой

Выясним теперь, как в квантовой механике амплитуды вероятности меняются в простран­стве. В некоторых предыдущих главах у вас могло возникнуть смутное чувство, что кое о чем мы умалчиваем. Например, когда мы тол­ковали о молекуле аммиака, мы решили описы­вать ее через два базисных состояния. За одно из них мы выбрали случай, когда атом азота находится «выше» плоскости трех атомов во­дорода, а в качестве другого базисного состояния выбрали такие условия, когда атом азота стоит «ниже» плоскости трех атомов водорода. Почему же мы выбрали именно эту пару состоя­ний? Почему бы не считать, что атом азота мо­жет оказаться либо на расстоянии 2Е от плос­кости трех атомов водорода, либо на расстоянии 3Е, а может, и 4Е. Ведь атом азота может зани­мать множество положений. Или, когда шла речь о молекулярном ионе водорода, в котором имеется электрон, распределенный между двумя протонами, мы тоже вообразили два базисных состояния. Одно — когда электрон находится по соседству с протоном № 1, и другое, когда он пребывает в окрестностях протона № 2. Ясно, что многие детали мы упустили. Электрон ведь находится не точно у самого протона № 2, а только в его окрестностях. Он может оказаться и где-то повыше протона, и где-то пониже, и где-то слева, и где-то справа.

Мы намеренно избегали уточнения таких деталей. Мы говорили, что нас интересуют только определенные стороны проблемы, и вооб­ражали, что если уж электрон находится по­близости от протона № 1, то он принимает некоторое довольно определенное положение.

На самом деле в этих условиях вероятность обнаружить элект­рон обладает каким-то определенным распределением в про­странстве вблизи протона. Но нас такие детали не заботили. Можно представить дело и иначе. Когда мы рассматривали молекулярный ион водорода, то избрали приближенный под­ход, описывая положение вещей на языке двух базисных со­стояний. В действительности же таких состояний уйма. Электрон может попасть вблизи протона в свое наинизшее, или основное, состояние, но имеется еще и множество возбужденных состояний. В каждом из них электрон как-то по-особому распре­делен вблизи протона. Эти возбужденные состояния мы игно­рировали, говоря, что нас интересуют лишь условия при наи­низшей энергии. Но как раз они-то, эти возбужденные состоя­ния, и приводят к тому, что возможны различные распределе­ния электрона вокруг протона. Если мы хотим детально описать молекулярный ион водорода, то следует принять во внимание и эти прочие допустимые базисные состояния. Это можно сделать многими способами, и один из них — детальнее рассмотреть состояния, когда расположение электрона в пространстве опи­сывается более тщательно.

Мы уже достаточно подготовлены, чтобы заняться более трудоемкой процедурой, которая позволит нам обстоятельнее го­ворить о местоположении электрона, задавая амплитуду вероят­ности того, что он будет обнаружен в каком угодно месте в данной ситуации. Эта более полная теория позволит подкре­пить те приближения, которыми мы раньше пользовались. Наши прежние уравнения в каком-то смысле смогут быть вы­ведены как своего рода приближения к более полной теории. Вас может удивить, почему мы не начали прямо с более полной теории и не делали приближений по мере движения вперед. Но мы считали, что, отправившись от приближения двух состояний и постепенно подходя к более полной теории, вам будет легче достичь понимания всей механики квантовой ме­ханики. Наш подход, по-видимому, противоположен тому, ко­торый вы найдете во многих книгах.

Когда мы обратимся к теме этой главы, вы заметите, что мы нарушаем правило, которому в прошлом неизменно следовали. Какой бы темы мы ни касались, мы всегда пытались более или менее полно представить вам физику дела, указывая как можно полнее, куда ведут эти идеи. Мы стремились наряду с описанием общих следствий теории представить и некоторые характерные детали, чтобы вам было ясно, куда ведет эта теория. А теперь нам придется нарушить это правило. Мы расскажем об ампли­тудах вероятности пребывания электрона где-то в пространстве и продемонстрируем вам дифференциальные уравнения, которым они удовлетворяют. Но у нас не будет времени углубиться и обсудить многие очевидные выводы, следующие из теории.

Более того, нам даже не удастся связать эту теорию с некоторы­ми приближенными формулировками, к которым мы раньше прибегали, скажем, когда изучали молекулу водорода или молекулу аммиака. На этот раз придется бросить дело на пол­пути, не окончив его. Курс наш близится к концу, и хочешь не хочешь, придется обойтись одним только введением в общие представления. Мы укажем связь с тем, о чем говорилось рань­ше, и, кроме того, некоторые другие подходы к задачам кванто­вой механики. Надеемся, что этих представлений вам хватит, чтобы потом двинуться самостоятельно и уже по книгам узнать многие выводы из приведенных здесь уравнений. Все-таки нужно оставить кое-что и на будущее.