Фиг. 14.5. Волновая функция для энергии Е а , стремящаяся к нулю при удалении х в отрицательную сторону.
Теперь протянем эту кривую правее х2. Там она искривляется прочь от оси и движется к большим положительным значениям (фиг. 14.6).
Фиг. 14.6. Волновая функция а(х) (см. фиг. 14.5), продолженная за x 2 .
Для выбранной нами энергии Еарешение a(х)с ростом х растет все сильнее и сильнее. Действительно, ведь и кривизна решения а(х)тоже возрастает (если потенциал остается почти постоянным). Амплитуда круто вырастает до гигантских масштабов. Что это означает? Просто что частица не «связана» потенциальной ямой. Обнаружить ее вне ямы бесконечно более вероятно, чем внутри. Для изготовленного нами решения гораздо более вероятно встретить электрон в x=+Ґ, чем где-либо еще. Найти решение для связанной частицы нам не удалось.
Что ж, попробуем взять другую энергию, скажем, чуточку повыше чем Еа, например Еb(фиг. 14.7).
фиг. 14.7. Волновая функция а(х) для энергии e b , большей чем Е а .
Если слева условия останутся теми же, то мы придем к решению, показанному на нижней части фиг. 14.7. На первых порах оно выглядит получше, нов конце концов оказывается таким же плохим, как и решение для Еа, только теперь при возрастании x величина а(х) становится все более и более отрицательной.
Может быть, в этом разгадка! Раз небольшое изменение энергии от Еак Еbприводит к тому, что кривая перебрасывается с одной стороны оси на другую, то, может быть, существует энергия, лежащая между Еаи Еb, при которой кривая для больших х будет стремиться к нулю. Так оно и есть, и мы на фиг. 14.8 изобразили, как может выглядеть решение.
Фиг. 14.8. Волновая функция для анергии Е c между Е а и Е b .
Вам нужно понимать, что решение, показанное на рисунке, это весьма частное решение. Если бы мы даже чуть-чуть подняли или снизили энергию, то функция перешла бы в другие кривые, похожие на одну из штриховых кривых фиг. 14.8, и опять для связанной частицы не получилось бы надлежащих условий. Мы пришли к выводу, что если частица должна находиться в потенциальной яме, то это может с ней случиться только при вполне определенной энергии.
Значит ли это, что у частицы, находящейся в связанном состоянии в потенциальной яме, может быть только одна энергия? Отнюдь. Могут быть и другие, но не слишком близко к Ес. Обратите внимание, что волновая функция на фиг. 14.8 четыре раза пересекает ось на участке х1х2. Если бы мы выбрали энергию значительно ниже Ес, то могло бы получиться решение, которое бы пересекло ось только трижды, только дважды, только единожды или ни разу. Возможные
решения намечены на фиг. 14.9.
Фиг. 14.9. Функция а(х) для пяти связанных состояний с наинизшими энергиями.
(Могут быть и решения, отвечающие более высоким энергиям.) Вывод состоит в том, что если частица загнана в потенциальную яму, то ее энергия принимает только определенные специальные значения, образующие дискретный энергетический спектр. Вы понимаете теперь, как способно дифференциальное уравнение описать этот основной факт квантовой физики.
Следует заметить только одно. Если энергия Е выше верха потенциальной ямы, то дискретных решений уже не будет, и разрешены все мыслимые энергии. Такие решения отвечают рассеянию свободных частиц на потенциальной яме. Пример таких решений мы видели, когда рассматривали влияние атомов примесей в кристалле.
* Помните, еще раньше мы условились, что
* Был использован тот факт, что
* О распределениях вероятностей шла речь в гл. 6, § 4 (вып. 1).
* Представьте себе, что по мере сближения точек х n амплитуда А прыжков из х n 1 в х n возрастает.
Глава 15
СИММЕТРИЯ И ЗАКОНЫ СОХРАНЕНИЯ
§ 1. Симметрия
§ 2. Симметрия и ее сохранение
§ 3. Законы сохранения
§ 4. Поляризованный свет
§ 5. Распад Λ°
§ 6. Сводка матриц поворота
Повторить: гл. 52 (вып. 4} «Симметрия законов физики»
§ 1. Симметрия
В классической физике немало величин (таких, как импульс, энергия и момент количества движения) сохраняется. Теоремы о сохранении соответствующих величин существуют и в квантовой механике. Самое прекрасное в квантовой механике это то, что теоремы сохранения в определенном смысле удается в ней вывести из чего-то другого; в классической же механике они сами практически являются исходными для других законов. (Можно, правда, и в классической механике поступать так же, как в квантовой, но это удается только на очень высоком уровне.) В квантовой механике, однако, законы сохранения очень тесно связаны с принципом суперпозиции амплитуд и с симметрией физических систем относительно различных изменений. Это и есть тема настоящей лекции. Хотя идеи эти мы будем применять главным образом к сохранению момента количества движения, но существенно здесь то, что все теоремы о сохранении каких угодно величин всегда связаны — в квантовой механике — с симметриями системы.
Начнем поэтому с изучения вопроса о симметриях систем. Очень простым примером служат молекулярные ионы водорода (впрочем, в равной степени подошли бы и молекулы аммиака), у которых имеется по два состояния. У молекулярного иона водорода за одно базисное состояние мы принимали такое состояние, когда электрон расположен возле протона № 1, а за другое базисное состояние то, в котором электрон располагался возле протона № 2. Эти два состояния (мы их называли |1> и |2>) мы снова показываем на фиг. 15.1, а.
Фиг. 15.1. Если состояния |1> и |2> отразить в плоскости Р—Р, они перейдут соответственно в состояния |2> и |1>.