Выбрать главу

Так что (15.11) есть математическая формулировка условий на симметричность физической ситуации относительно оператора Q^. Она определяет симметрию.

§ 2. Симметрия и ее сохранение

Прежде чем применять только что найденный результат, хотелось бы еще немного вникнуть в идею симметрии. Положим, что стечение обстоятельств таково, что после действия опера­тора Q^ на состояние получается опять то же состояние. Это очень частный случай, но все же допустим, что так сложилось, что состояние |y'>=Q^|y0>. физически совпадает с состоянием |y0>. Это значит, что |y'> равняется |y0>, если не считать не­которого фазового множителя. Как это себе представлять? Пусть, например, имеется ион H+2 в состоянии, которое мы когда-то обозначали |I>. У этого состояния имеется одинаковая ам­плитуда побывать в базисных состояниях |1> и |2>. Вероят­ности показаны столбиками на фиг. 15.3, а.

Фиг. 15.3. Состояние |I> и состояние P^|I>, получае­мые отражением |I> в плоскости, проходящей посреди­не между атомами в ионе Н2+.

Если мы на состояние |I> подействуем оператором отраже­ния Р^, он перевернет его, поменяв местами |1> с|2>, а |2> с|1>; полу­чатся вероятности, по­казанные на фиг. 15.3,б. Перед нами опять состояние |I>. Если начать с состояния |II>, то вероятности до и после отражения будут выглядеть тоже одинаково. Правда, если посмотреть на ампли­туды, то разница все же есть. У состояния |I> после отраже­ния амплитуды останутся теми же, у состояния | //) они приобретут противоположный знак. Иными словами,

Если написать , то у состояния |I> мы имеем еid=1, а у состояния |II> имеем еid=-1.

Возьмем другой пример. Пусть у нас есть правополяризованный по кругу фотон, распространяющийся в направлении z. Если мы совершим операцию поворота вокруг оси z, то, как мы знаем, это просто приведет к умножению амплитуды на eij, где j — угол поворота. Значит, в этом случае для операции поворота 8 просто равно углу поворота.

Далее, ясно, что если оказывается верным, что оператор Q^ в какой-то момент времени просто меняет фазу состояния (ска­жем, в момент t=0), то это будет верно всегда. Иначе говоря, если состояние |y1> переходит за время t в состояние |y2>:

и если симметрия физической картины такова, что

то верно и то, что

Это ясно, ведь

[Верхние равенства следуют из (15.13) и (15.10) для симметричной системы, нижние — из (15.14) и из того, что всякое число, скажем еid, коммутирует с оператором.]

Итак, при некоторых симметриях то, что верно сначала, вер­но всегда. Но разве это не закон сохранения? Да! Он утверждает, что если вы взглянете на исходное состояние и, проделав где-то встороне небольшой подсчет, откроете, что операция, которая является операцией симметрии для системы, приводит только к умножению на некоторый фазовый множитель, то вы будете уверены, что это же свойство будет выполнено для конечного состояния — та же операция умножит и конечное состояние на тот же фазовый множитель. Это будет верно всегда, даже если вы ничего не знаете о том внутреннем механизме мира, который изменяет систему от начального состояния к конечному. Даже если вы не позаботились вглядеться в детали того, каким именно способом система переходит от одного состояния к другому, вы все равно имеете право говорить, что если вещь вначале находилась в состоянии с определенным характером симметрии и если гамильтониан этой вещи симметричен отно­сительно этой операции симметрии, тогда тот же характер симметрии останется у состояния на вечные времена. Это основа всех законов сохранения квантовой механики.

Рассмотрим частный пример. Возьмем опять оператор Р^. Сперва, правда, немножко изменим определение операции Р. Пусть Р^ будет не просто зеркальным отражением, потому что оно требует определения плоскости, в которой поставлено зер­кало. Существует особый вид отражения, который указания плоскости не требует. Переопределим операцию Р^ таким обра­зом: сперва вы отражаете в зеркале, находящемся в плоскости z, так что z переходит в -z, x остается х, а у остается у; затем вы поворачиваете систему на угол 180° вокруг оси z, так что х переходит в -х, а у в -у. Все вместе называется инверсией, обращением координат. Каждая точка проецируется через начало координат в диаметрально противоположное положение. Все координаты всего на свете меняют знак. Эту операцию мы, как и прежде, будем обозначать символом Р. Она изображена на фиг. 15.4 и немного удобнее, чем простая операция отражения, потому что не нужно указывать, в какой координатной плоско­сти происходит отражение, достаточно лишь указать точ­ку, являющуюся центром симметрии.

Фиг. 15.4. Операция инверсии Р^. То, что находится в точке A (х, у, z), переходит в точку

А' (-х, -у, -z).

Теперь предположим, что у sac есть состояние |y0>, которое при операции инверсии переходит в еid|y0>, т. е.

Сделаем теперь новую инверсию. После двух инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться

Но

Отсюда следует, что (еid)2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то У d могут быть только две возможности:

еid=±1,

а это означает, что или

В классической физике, если состояние симметрично отно­сительно инверсии, то эта операция дает опять то же состояние. А в квантовой механике имеются две возможности: получается

либо то же состояние, либо минус то же состояние. Когда полу­чается то же состояние, Р^|y0>=|y0>, мы говорим, что у со­стояния |y0> четность положительна. Если знак меняется, так что Р^|y0>=-|y0>, мы говорим, что четность состояния отрицательна. (Оператор инверсии Р^ известен также как опе­ратор четности.) Состояние |I> иона Н+2 обладает положитель­ной четностью; состояние же |II>отрицательной [см. (15.12)]. Бывают, конечно, состояния, не симметричные отно­сительно операции Р^;это состояния без определенной четности. Например, в системе Н+2 состояние |I> имеет положительную четность, состояние | II>отрицательную, а состояние | определенной четности не имеет.

Когда мы говорим о том, что операция (например, инверсия) была совершена «над физической системой», то это можно пред­ставлять себе двояким образом. Можно считать, что все, что было в точке r, физически сдвинулось в обратную точку -r; или можно считать, что мы смотрим на ту же систему из новой системы отсчета х', y', z', связанной со старой формулами х'=-х, у' =-у и z'=-z. Точно так же, когда мы говорим о поворотах, то можно либо считать, что мы поворачиваем цели­ком всю физическую систему, либо что поворачиваем систему координат, в которой мы измеряем нашу систему, оставляя последнюю закрепленной в пространстве. Эти две точки зрения по существу равноценны. Они равноценны и при повороте, только поворот системы на угол q подобен повороту системы отсчета на отрицательный угол —q. В нашем курсе мы обычно смотрели, что получается, когда берется проекция на новую систему осей. То, что при этом получается, совпадает с тем, что получится, если мы оставим оси прежними и повернем тело на столько же назад. Когда вы это делаете, не забудьте поменять знаки углов.