Выбрать главу

acosq/2. (15.33)

Точно так же амплитуда того, что вдоль положительной оси z пройдет протон, направив свой спин вниз, равна

-bsinq/2. (15.34)

Те два процесса, к которым относятся эти амплитуды, показаны

на фиг. 15.9.

Фиг. 15.9. Два возможных состояния распада L0.

Теперь зададим такой немудреный вопрос. Пусть мы соби­раемся регистрировать протоны, вылетающие под углом q, не интересуясь их спином. Два спиновых состояния (вверх и вниз по оси z') различимы, даже если бы мы того и не хотели. Значит, чтобы получить вероятность, надо амплитуды возвысить в квад­рат и сложить. Вероятность f(q) обнаружить протон в неболь­шом телесном угле qW при q равна

Вспоминая, что

запишем f(q) так:

Угловое распределение имеет вид

Одна часть вероятности не зависит от q, а другая зависит от cosq линейно. Из измерений углового распределения мы можем получить a и b, а значит, и |а| , и |b|.

Можно получить ответ и на многие другие вопросы. Может быть, вас интересуют лишь те протоны, спин которых направлен вверх относительно старой оси z? Каждый член в (15.33) и (15.34) даст амплитуду того, что спин протона окажется направ­ленным вверх или вниз по отношению к оси z' (|+z'> и |-z'>). А состояние, когда спин направлен вверх относитель­но старой оси, | + z), можно выразить через два базисных со­стояния | + z'> и |-z'>. Можно тогда взять две амплитуды (15.33) и (15.34) с надлежащими коэффициентами (cosq/2 и -sinq/2) и получить полную амплитуду

Ее квадрат даст вероятность того, что протон вылетит под углом q со спином, направленным туда же, куда направлен спин L0 (вверх по оси z).

Если бы четность сохранялась, можно было бы сделать еще одно утверждение. Распад на фиг. 15.8 — это просто зеркальное отражение, скажем в плоскости yz, распада с фиг. 15.7. Если бы четность сохранялась, b равнялось бы либо a, либо -а. Тогда коэффициента в (15.37) был бы равен нулю и распад оди­наково часто происходил бы во всех направлениях.

Результаты опытов говорят, однако, что при распаде асим­метрия существует. Измеренное угловое распределение дейст­вительно, как мы предсказали, меняется по закону cosq, а не по закону cos2q или по другой степени. Из этого углового распределения, стало быть, следует, что спин L0 равен 1/2. Кроме того, мы видим, что четность не сохраняется. Действи­тельно, коэффициента на опыте найден равным -0,62±0,05, так что b примерно вдвое больше а. Отсутствие симметрии от­носительно отражений совершенно очевидно.

Вы видите, как много можно вывести из сохранения момента количества движения. Еще некоторые примеры будут приведены в следующей главе.

· · ·

Замечание после лекции. Под амплитудой а здесь мы подразумевали амплитуду того, что состояние

| протон летит по + z, спин по + z> обра­зовано за бесконечно малое время dt из состояния |L, спин по + z>, или, иными словами, что

<протон летит по +z, спин по +z|H|L, спин по + z>= iha, (15.38)

где H — гамильтониан всего мира или по крайней мере той его части, которая ответственна за L-распад. Сохранение момента количества дви­жения означает, что у гамильтониана должно быть такое свойство:

<протон летит по +z, спин по -z|H|L, спин по +z>=0. (15.39)

Под амплитудой b подразумевается, что

<протон летит по + z, спин по —z|H|L, спин по -z>=ihb. (15.40)

Сохранение момента количества движения предполагает, что

<протон летит по + z, спин по +z|H|L, спин по -z>=0. (15.41)

Если вам не ясно, как написаны амплитуды (15.33) и (15.34), можно их записать в более математической форме. Когда мы писали (15.33), нам нужна была амплитуда того, что Л со спином, направленным по +z, распадается на протон, движущийся вдоль направления +z' и обладаю­щий спином, направленным тоже по +z', т. е.

<протон летит по + z', спин по +z'|H|L, спин по +z>. (15.42)

По общим теоремам квантовой механики эту амплитуду можно записать так:

2S<протон летит по + z', спин по +z'|H|L, i><L, i|L, спин по +z>,

(15.43)

где суммирование проводится но базисным состояниям |L, i> покоящейся L-частицы. Поскольку спин L-частнцы равен 1/2,таких состояний два, л каком бы базисе мы ни работали. Если в качестве базисных мы выберем состояния со спином, направленным вверх и вниз по отношению к оси z'(|+z'>, |-z'>), то амплитуда (15.43) будет равна сумме

<протон летит по +z', спин по +z'|H|L, +z'> <L, +z'|L, +z>+ +<протон летит по +z', спин по +z'|H|L,-z'><L,-z|L, +z>. (15.44).

Первый множитель в первом слагаемом равен а [из (15.38)], а первый множитель во втором слагаемом равен нулю — из формулы (15.41), в свою очередь следующей из сохранения момента количества движения. Второй множитель <L, +z'|L, +z> из первого слагаемого — это как раз амплитуда того, что частица со спином 1/2, направленным вверх по одной оси, будет также обладать спином, направленным вверх по другой оси, повернутой относительно первой на угол q . Такая амплитуда равна cosq/2 [см. табл. 4.2 (вып. 8)]. Так что (15.44) равно просто а созq/2, как и было написано в (15.33). Амплитуда (15.34) следует из таких же рассуж­дений для L-частицы со спином, направленным вниз.

· · ·

§ 6. Сводка матриц поворота

Теперь мы хотим собрать воедино все, что мы узнали о пово­ротах частиц со спином 1/2 и спином 1; это будет удобно для дальнейшего. Ниже вы найдете таблицы двух матриц поворота Rz(j) и Ry(q) для частиц со спином 1/2, для частиц со спином 1 и для фотонов (частиц со спином 1 и нулевой массой).

Для каждого из них приведены элементы матрицы <j|R|i> по­воротов вокруг оси 2 или оси y. Они, конечно, в точности экви­валентны амплитудам типа <+Т|0S>, которыми мы поль­зовались в предыдущих главах. Под Rz(j) мы понимаем, что берется проекция состояния на новую систему координат, по­вернутую на угол j вокруг оси z, причем для определения направ­ления поворота всегда применяется правило правой руки; RV(q) означает, что оси координат повернуты на угол 9 вокруг оси у. Зная эти два поворота, вы запросто сможете рассчитать любой поворот. Как обычно, матричный элемент пишется так, что со­стояние слева — это базисное состояние новой (повернутой) системы, а состояние справа — это базисное состояние старой (неповернутой) системы. Клетки таблицы можно истолковывать по-разному. К примеру, клетка eij/2 в табл. 15.1 означает, что матричный элемент < — |R|—> = е-ij/2. Но это означает также, что R^|>=е-ij/2| — } или что